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The setting

The setting

We consider a system of identical classical particles in Λ ⊆ Rd , interacting through a pair potential
w . The (canonical) free energy at temperature T ≥ 0 of N particles distributed according to a
(symmetric) probability distribution PN on ΛN is given by

FT (PN) =

∫
ΛN

N∑
j<k

w(xj − xk )dPN(x) + T

∫
ΛN

log(N!PN(x)) dPN(x)︸ ︷︷ ︸
=:−SN (PN )

.

The minimal free energy at fixed density ρ with
∫
ρ = N is

FT [ρ] = inf
ρPN =ρ

FT (PN) = inf
ρPN =ρ

{∫
ΛN

N∑
j<k

w(xj − xk ) + T log(N!PN(x)) dPN(x)

}
.

In the grand-canonical setting, the distribution of the particles is described by a family P = (Pn)n≥0,
where each Pn is a symmetric measure on Λn, normalized such that

∑
n≥0 Pn(Λn) = 1. Minimal

grand-canonical free energy at fixed density:

GT [ρ] = inf
ρP=ρ

{∑
n≥0

∫
Λn

n∑
j<k

w(xj − xk ) + T log(n!Pn(x)) dPn(x)

}
,

where
ρP(x) =

∑
n≥1

ρPn (x) =
∑
n≥1

n

∫
Λn−1

Pn(x , x2, . . . , xn)dx2 · · · dxn.
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The setting

For any external potential V , we have the two-step minimization:

GT (V ,Λ) = inf
P

{∑
n≥0

∫
Λn

n∑
j=1

V (xj ) +
n∑

j<k

w(xj − xk ) + T log(n!Pn(x)) dPn(x)

}

= inf
ρ

{
inf

ρP=ρ

(∑
n≥0

∫
Λn

n∑
j<k

w(xj − xk ) + T log(n!Pn(x)) dPn(x)

)
+

∫
Λ
Vρ

}

= inf
ρ

{
GT [ρ] +

∫
Λ
Vρ

}
.

The inverse problem (Legendre-Fenchel duality): Given a density ρ, if one can find a potential
V (x) such that

ρ(x1) =
e−

1
T
V (x1)

ZT ,V ,Rd

∞∑
n=1

n

n!

∫
Rd(n−1)

e−
1
T

(∑
j<k w(xj−xk )+

∑
j≥2 V (xj )

)
dx2 · · · dxn,

then
GT [ρ] = GT (V ,Rd )−

∫
Rd

Vρ.

(Chayes and Chayes, 1984; Chayes, Chayes, and Lieb, 1984). Solved explicitly in the 1D hard-core
case (Percus, 1976). Uniformly small densities (Jansen, Kuna, and Tsagkarogiannis, 2022).
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The setting

Natural questions:
Representability: Given a density ρ ∈ L1(Rd ), when are GT [ρ] and FT [ρ] finite? Which
densities arise as the one-particle density of some many-body state with finite energy?

Can GT [ρ] and FT [ρ] be bounded in terms of ρ? Difficulty: Construction of states with
densities exactly equal to a prescribed ρ ∈ L1(Rd ).
How can GT [ρ] and FT [ρ] be approximated in practice?

Initial observations:
Any canonical state is also a grand-canonical state, so

GT [ρ] ≤ FT [ρ]

whenever ρ has integer mass.
If
∫
Rd ρ = N + t with t ∈ (0, 1) and N ∈ N, we can write ρ = (1 − t) N

N+t
ρ+ t N+1

N+t
ρ and

obtain after using the concavity of the entropy

GT [ρ] ≤ (1 − t)FT

[
N

N + t
ρ

]
+ t FT

[
N + 1
N + t

ρ

]
.

Weak interactions (w ∈ L1(Rd )). Using an uncorrelated state P = (ρ/N)⊗N immediately gives

FT [ρ] ≤
1 − 1/N

2

∫∫
Rd×Rd

w(x − y)ρ(x)ρ(y)dx dy + T

∫
Rd

ρ log ρ

≤
∥w+∥L1

2

∫
Rd

ρ2 + T

∫
Rd

ρ log ρ.
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The setting

The interaction potential

Assumption (A)

Let w : Rd → R∪ {+∞} be a lower semi-continuous and even function satisfying for some κ > 0:

w is stable, that is, ∑
1≤j<k≤N

w(xj − xk ) ≥ −κN

for all N ∈ N and x1, . . . , xN ∈ Rd ;

w is upper and lower regular, that is, there exist 0 ≤ α < ∞ and s > d such that

1(|x | < 1)
κ|x |α

−
κ

1 + |x |s
≤ w(x) ≤

κ1(|x | < 1)
|x |α

+
κ

1 + |x |s
.

α determines the repulsive strength of w near the origin. When α < d , w is integrable on Rd .
When α ≥ d , w has a non-integrable singularity at the origin. In this case, for any state with
finite energy, the particles cannot be too close to each other and must be heavily correlated.
When

∫
ρ|log ρ| < ∞, stability of w implies

GT [ρ] ≥ − κ

∫
Rd

ρ− T max
ρP=ρ

S(P) = − (κ+ T )

∫
Rd

ρ+ T

∫
Rd

ρ log ρ,

by taking P to be the Poisson state P =
( e−

∫
ρ

n!
ρ⊗n

)
n≥0

.
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Representability and bounds

Representability and bounds in one dimension

Theorem (d = 1)

Suppose 1 ≤ α < ∞. Then for any density 0 ≤ ρ ∈ L1(R) with
∫
R ρ ∈ N and T

∫
R ρ|log ρ| < ∞,

FT [ρ] ≤ Cκ

∫
R
ρ2 + CT

∫
R
ρ+ T

∫
R
ρ log ρ

+


Cκ

∫
R
ρ1+α for α > 1,

Cκ

(∫
R
ρ2 +

∫
R
ρ2(log ρ)

+

)
for α = 1.

Proof: Draw a one dimensional chess board.

Using the same approach in any dimension d ≥ 1, cutting Rd into slices Lj × Rd−1, gives the
following:

Corollary (Representability in any dimension)

For any density ρ ∈ L1(Rd ) with T
∫
ρ|log ρ| < ∞, we have GT [ρ] < ∞, and when

∫
ρ ∈ N, we

have FT [ρ] < ∞.

If w is a hard-core potential, the question of representability is highly non-trivial, and classifying the
set of representable densities in this case is an open problem.
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Representability and bounds

Grand canonical bounds

Theorem (Jex-Lewin-M. 2023)

Suppose that d ≤ α < ∞, and assume that 0 ≤ ρ ∈ L1(Rd ) satisfies T
∫
Rd ρ| log ρ| < ∞. Then

GT [ρ] ≤ Cκ

∫
Rd

ρ2 + CT

∫
Rd

ρ+ T

∫
Rd

ρ log ρ

+


Cκ

∫
Rd

ρ1+α
d for α > d ,

Cκ

(∫
Rd

ρ2 +

∫
Rd

ρ2( log ρ)
+

)
for α = d .

Here the constant C depends only on the dimension d and the powers α, s.

Outline of proof:

If
∫
ρ ≤ 1, we take P = (Pn) defined by P0 = 1 −

∫
ρ, P1 = ρ, Pn = 0 for n ≥ 2.

Suppose ρ is compactly supported with
∫
ρ > 1, and fix c > 0 sufficiently small. For each

x ∈ supp ρ, define ℓ(x) to be the largest number such that∫
x+ℓ(x)C

ρ(y)dy = c,

where C = (−1/2; 1/2)d is the unit cube.
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Representability and bounds

Lemma (Besicovitch covering with minimal distance (Frank, Laptev, and Weidl, 2022; Guzmán,
1975))

There exists a set of points x
(k)
j with 1 ≤ k ≤ K ≤ 3d (4d + 1) and 1 ≤ j ≤ Jk < ∞ such that

the cubes C(x(k)j ) := x
(k)
j + ℓ(x

(k)
j )C cover the support of ρ and each x ∈ Rd is in at most 2d

such cubes,

for every k, the cubes
(
C(x(k)j )

)
1≤j≤Jk

in the kth collection satisfy

d
(
C(x(k)j ), C(x(k)ℓ )

)
≥

1
2
min

{
ℓ(x

(k)
j ), ℓ(x

(k)
ℓ )

}
.

We obtain the following partition of unity:

1supp ρ =
K∑

k=1

Jk∑
j=1

1
C(x(k)j )∩supp ρ

η
, 1supp ρ ≤ η :=

K∑
k=1

Jk∑
j=1

1
C(x(k)j )

≤ 2d .

Write ρ as a convex combination

ρ =
1
K

K∑
k=1

(∑
j

ρ
(k)
j

)
, ρ

(k)
j :=

Kρ1
C(x(k)j )

η
,

where for c small, ∫
ρ
(k)
j ≤ 3d (4d + 1)

∫
C(x(k)j )

ρ = 3d (4d + 1)c ≤ 1.
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Representability and bounds

Define a trial state by P := 1
K

∑K
k=1 P(k), where

P(k) =

Jk⊗
j=1

((
1 −

∫
Rd

ρ
(k)
j

)
⊕ ρ

(k)
j ⊕ 0 ⊕ · · ·

)
.

Calculate the free energy, using 1
ℓ(x)α

≤ c−
α+d
d

∫
C(x) ρ

1+α
d for all x ∈ Rd (exercise).

It is very difficult to control the mass contained in each collection
(
C(x(k)j )

)
1≤j≤Jk

, making the
approach unsuitable to use in the canonical case.
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Representability and bounds

Canonical bounds

Theorem (Jex-Lewin-M. ’23)

Suppose d ≤ α < ∞. Let 0 ≤ ρ ∈ L1(Rd ) with 2 ≤
∫
Rd ρ ∈ N, and T

∫
Rd ρ| log ρ| < ∞. Then we

have

FT [ρ] ≤ C(κ+ T )

∫
Rd

ρ2 + CT

∫
Rd

ρ+ T

∫
Rd

ρ log ρ+ T

∫
Rd

ρ logRd

+


Cκ

∫
Rd

ρ1+α
d for α > d ,

Cκ

(∫
Rd

ρ2 +

∫
Rd

ρ2( log ρ)
+

)
for α = d ,

where the constant C only depends on the dimension d and the powers α, s.

When
∫
Rd ρ(y) dy > 1, we define the local radius R(x), x ∈ Rd to be the largest number satisfying∫

B(x,R(x))
ρ(y) dy = 1.

We conjecture that the bound holds without the non-local term
∫
ρ logRd .
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Representability and bounds

The local radius and optimal transport

The function R is 1-Lipschitz continuous with minx∈Rd R(x) > 0, and R(x) ∼ |x | as |x | → ∞.

Connection to the Hardy-Littlewood maximal function:

1
|B1|R(x)d

=
1

|BR(x)|

∫
B(x,R(x))

ρ(y)dy ≤ sup
r>0

1
|Br |

∫
B(x,r)

ρ(y) dy =: Mρ(x).

Recall the Hardy-Littlewood maximal inequality: ∥Mρ∥p ≤ Cd,p∥ρ∥p for p > 1.

Theorem (Optimal transport state (Colombo, Di Marino, and Stra, 2019))

Let 0 ≤ ρ ∈ L1(Rd ) with N =
∫
Rd ρ ∈ N. There exists an N-particle state POT with density

ρPOT
= ρ such that

|xi − xj | ≥ max
(

min
x∈Rd

R(x),
R(xi )+R(xj )

3

)
for 1 ≤ i ̸= j ≤ N

POT –almost everywhere.

The state POT emerges as the optimizer for a multi-marginal optimal transport problem. The proof
is non-constructive and relies on Kantorovich duality. POT is usually singular with respect to the
Lebesgue measure.

Peter S. Madsen Classical DFT ISTA June 2024 12 / 21



Representability and bounds

The interaction energy of POT

Fix x = (x1, . . . , xN) in the support of POT with R(x1) ≤ R(x2) ≤ · · · ≤ R(xN). Then

N∑
j=i+1

1
|xi − xj |α

≤
1

|B(0, 1
6R(xi ))|

∫
B(0, 1

3R(xi ))
c

1
|y |α

dy = C
1

R(xi )α
.

Calculating the interaction energy in the state POT , one finds (for α > d)

F0[ρ] ≤ κ

∫
RdN

N∑
i=1

N∑
j=i+1

(
1

|xi − xj |α
+

1
1 + |xi − xj |s

)
dPOT (x)

≤ Cκ

∫
RdN

N∑
i=1

1
R(xi )α

+
1

R(xi )d
dPOT (x)

= Cκ

∫
Rd

ρ(x)

R(x)α
+

ρ(x)

R(x)d
dx

≤ C̃κ

∫
Rd

ρ(x)1+
α
d + ρ(x)2 dx .

To handle positive temperature, POT needs to be regularized. This can be done using the
Besicovitch covering lemma and the block approximation (Carlier et al., 2017), which locally
replaces POT with a pure tensor, while keeping the density fixed.
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Representability and bounds

The (grand-canonical) local density approximation

The minimal free energy GT [ρ] at density ρ is approximated using a local functional,

GT [ρ] ≈
∫
Rd

f (ρ(x)) dx .

The function f (ρ0) is typically the free energy per unit volume of an infinite homogeneous system
at density ρ0.

Previous results:

Classical uniform electron gas with Coulomb interaction in 3D (Lewin, Lieb, and Seiringer,
2018).

Quantum systems with Coulomb interactions in 3D (Lewin, Lieb, and Seiringer, 2020).

Extension of the quantum case to a class of smooth short-range interactions (Mietzsch, 2020).

All previous results rely on the Graf-Schenker inequality/screening properties of the Coulomb
potential. All exclusively 3D and grand-canonical.
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Thermodynamic limits

Thermodynamic limits

Usual thermodynamic limit: For any ρ0 > 0 and reasonable sequence of domains Λn ⊆ Rd with
Λn ↗ Rd , the thermodynamic limit exists,

fT (ρ0) := lim
n→∞

n|Λn|−1→ρ0

FT (n,Λn)

|Λn|
,

and is independent of the sequence Λn. Here, FT (n,Λn) is the minimal canonical free energy of an
n-particle system in Λn, without restrictions on the density. The limit function fT is known to be
convex and C1 (Ruelle, 1970, 1999).

Proposition (Jex-Lewin-M. 202?)

Let ρ0 > 0. Suppose that Λn ⊆ Rd is a sequence of bounded connected domains with sufficiently
regular boundaries, and such that |Λn| → ∞. Then we have

lim
n→∞

GT [ρ01Λn ]

|Λn|
= fT (ρ0).

Futhermore, if ρ0|Λn| ∈ N for all n, then

lim
n→∞

FT [ρ01Λn ]

|Λn|
= fT (ρ0).

Clearly, FT [ρ01Λn ] ≥ FT (ρ0|Λn|,Λn). The lower bound on GT [ρ01Λn ] follows from Legendre duality
(equivalence of ensembles). The upper bounds are proved by construction of a trial state in the
spirit of the floating Wigner crystal.
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Thermodynamic limits

Bounds on fT

Proposition

Let w satisfy Assumption (A). There are constants C , c > 0 depending only on w and the
dimension d , such that for any ρ ≥ 0, we have

fT (ρ) ≤
{
Cρmax(2,1+α/d) + C(1 + T )ρ+ Tρ log ρ, α ̸= d ,

Cρ2(log ρ)+ + C(1 + T )ρ+ Tρ log ρ, α = d ,

and

fT (ρ) ≥
{
cρmax(2,1+α/d) − (C + T )ρ+ Tρ log ρ, α ̸= d ,

cρ2(log cρ)
+
− (C + T )ρ+ Tρ log ρ, α = d .

Let M > 0, and consider GT [ρ] for the class of densities 0 ≤ ρ ∈ (L1 ∩ L∞)(Rd ) with
∥ρ∥∞ ≤ M. The universal upper bound simplifies

GT [ρ] ≤ C(M,T ,w , d)

∫
Rd

ρ+ T

∫
Rd

ρ log ρ.

For any density ρ ∈ L1(Rd ) and ℓ > 0, we denote Cℓ := [−ℓ/2, ℓ/2]d is the cube of side
length ℓ, and

δρℓ(z) := ess sup
x,y∈z+Cℓ

|ρ(x)− ρ(y)|
ℓ

.

When ρ = ρ01Λ, then δρℓ = 0 everywhere, except at distance of order ℓ to the boundary ∂Λ,
where it is bounded by ρ0/ℓ.
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The (grand-canonical) local density approximation

The local density approximation

Theorem (Jex-Lewin-M. 202?)

Let M > 0, T ≥ 0, p ≥ 1, and b >

{
2 − 1

2p if p ≥ 2,
3
2 + 1

2p if 1 ≤ p < 2.
Let w be a short-range interaction satisfying Assumption (A) with s > d + 1. There exists a
constant C > 0 depending on M,T ,w , d , p, b, such that∣∣∣∣GT [ρ]−

∫
Rd

fT (ρ(x)) dx
∣∣∣∣ ≤ C

√
ℓ

(∫
Rd

√
ρ+ ℓbp

∫
Rd

δρℓ(z)
p dz

)
,

for any ℓ > 0, and any density ρ ≥ 0 such that
√
ρ ∈ (L1 ∩ L∞)(Rd ) with ∥ρ∥∞ ≤ M.

Bounds on GT and fT ensure that the left hand side is finite. Note that
∫
ρ|log ρ| ≤

∥√ρ log ρ∥∞
∫ √

ρ.

Valid for all densities satisfying the conditions, but only useful for slowly varying densities.

The constant C increases exponentially with M, and with the growth rate α of w near the
origin.

One could expect a similar estimate to hold without the constraint on ∥ρ∥∞, where
√
ρ is

replaced by ∫
Rd

ρ+ ρmax(2,1+α/d) + Tρ(log ρ)−.
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The (grand-canonical) local density approximation

When ρ has additional regularity, we have:

Corollary

Suppose, in addition to the assumptions from before, that p > d and ∇ρ ∈ Lp(Rd ). Then we have∣∣∣∣GT [ρ]−
∫
Rd

fT (ρ(x)) dx
∣∣∣∣ ≤ Cε

(∫
Rd

√
ρ+

1
ε2bp

∫
Rd

|∇ρ|p
)

for any ε > 0.

This is a straightforward application of Morrey’s inequality, which states for p > d that

|ρ(x)− ρ(y)| ≤ K
1
p |x − y |1−

d
p

(∫
Q
|∇ρ|p

) 1
p
, x , y ∈ Q,

for any cube Q.

Taking a smooth ρ and rescaling ρN(x) := ρ(N−1/dx) yields

GT [ρN ] = N

∫
Rd

fT (ρ(x)) dx + O
(
N1− 1

2bd
)

for all b > 7/4.
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Elements of the proof

Elements of the proof (lower bound)

Recall the equivalence of ensembles for the usual thermodynamic limit,

fT (ρ0) = sup
µ∈R

(
gT (µ) + µρ0

)
,

where gT (µ) is the grand canonical energy per unit volume at chemical potential µ ∈ R for an
infinite system.
Introduce an external potential V (x) = −

∑
k∈Zd µk (x)1Ck

(x). Then

GT [ρ] +

∫
Vρ ≥ inf

P=(Pn)

{
GT (P) +

∑
n≥1

∫
Rdn

n∑
i=1

V (xi ) dPn(x)
}

= GT (V ,Rd ).

The minimizer for the right hand side is a Gibbs state PV .
Localize into cubes,

GT (V ,Rd ) ≥
∑
k∈Zd

GT (−µk ,Ck ) +
∑

k,m∈Zd

k ̸=m

⟨Ik,m⟩PV ,

where ⟨Ik,m⟩PV = 1
2

∫∫
Ck×Cm

w(x − y)ρ
(2)
PV

(x , y) dx dy .

If µk is constant in Ck , then GT (−µk ,Ck ) ≈ ℓdgT (µk ). Choose µk to satisfy
gT (µk ) + ρkµk = fT (ρk ) for some appropriate ρk .
To control error terms ⟨Ik,m⟩PV from the interaction, we use uniform bounds on 2-body
correlation functions for usual Gibbs states (Ruelle, 1970).
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Elements of the proof

Ruelle bounds

A family of bounds due to (Ruelle, 1970) which allows one to uniformly control the local
average (square) number of particles

〈
n2
Q

〉
T ,µ,Ω

in a cube Q of side length L, for a Gibbs

state in the set Ω ⊆ Rd . Unfortunately not quantitative in the original paper.

One version of the bound takes the form〈
n2
Q

〉
T ,µ,Ω

≤ |Q|2CT e
µ
T

(
1 + e

dµ
Tε

)
,

for all sufficiently large cubes Q, where ε = min(1, s − d)/2, and CT depends only on T and
the interaction w .

Alternatively, in the presence of an external potential V , which is bounded from below by a
constant −µ0, 〈

n2
Q

〉
T ,V

≤ CT |Q|
∫
Q
e−

1
T
V (x) dx

(
1 + e

dµ0
εT

)
.
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