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OUTLINE

@ Motivation: The periodic table of the elements

® (Non-)Periodicity of large atoms?
— 3 (hopefully well know) models

® The infinite atoms in the TEFMF-model

@ Outlook
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The periodic table

THE PERIODIC TABLE
Ser::s-vl 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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As its name suggests, one of the key features of the periodic table is the
fact that that it illustrates a periodicity of the properties of the elements.
Elements in the same group are chemically "more similar" than elements
from different groups.
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THE PERIODIC TABLE
Ser::s-vl 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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As its name suggests, one of the key features of the periodic table is the
fact that that it illustrates a periodicity of the properties of the elements.
Elements in the same group are chemically "more similar" than elements
from different groups.

Blindly continuing this periodicity in the Z — oo limit leads to the
asymptotic formula Z, ~ n>/6 for the atomic numbers when "leaving" @NL’XTH
the red block.



(Non-)Periodicity in 3 models
[ leJele]

SCHRODINGER THEORY FOR ATOMS

We will throughout our presentation ignore relativistic effects and use units
in which e = 2m. = h = 1. With these choices, the Schrédinger
Hamiltonian

z
Z 1 1
Hz = (*Ai - +3 — )
; | 2;\$i—$j|
is believed to describe the behaviour of neutral atoms. Here,

(:Cl, .. .,l’z) € (Rg)z,

and the operator Hz acts on the antisymmetric (fermionic) subspace of the
Hilbert space L*(R?; (C2)®Z including 2 spin degrees of freedom.
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and the operator Hz acts on the antisymmetric (fermionic) subspace of the
Hilbert space L*(R?; (C2)®Z including 2 spin degrees of freedom.

® In the ideal world, we would be able to detect a periodicity in Hz as
Z — o0, but...

f)MATH



(Non-)Periodicity in 3 models
[ leJele]

SCHRODINGER THEORY FOR ATOMS

We will throughout our presentation ignore relativistic effects and use units
in which e = 2m. = h = 1. With these choices, the Schrédinger
Hamiltonian

z
Z 1 1
Hz = (*Ai - +3 — )
; | 2;\$i—$j|
is believed to describe the behaviour of neutral atoms. Here,

(:Cl, .. .,l’z) € (Rg)z,

and the operator Hz acts on the antisymmetric (fermionic) subspace of the
Hilbert space L*(R?; (C2)®Z including 2 spin degrees of freedom.

® In the ideal world, we would be able to detect a periodicity in Hz as
Z — o0, but...

e Taking the Z — oo limit in Schrédinger theory is notoriously difficult.
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(Non-)Periodicity in 3 models

0@00

THE TF- AND TFMF-MODELS

In Thomas-Fermi theory for atoms the energy of the system is modelled by

where p > 0 is the electronic density. We denote the unique minimizer of
this functional p5* . This is radially symmetric and has J py" = Z, thus
describes a neutral atom.
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THE TF- AND TFMF-MODELS

In Thomas-Fermi theory for atoms the energy of the system is modelled by

where p > 0 is the electronic density. We denote the unique minimizer of
this functional p5* . This is radially symmetric and has J py" = Z, thus
describes a neutral atom. It is in this context natural to consider also the
potential ®LF (z) := Z/|x| — p5" * |z|~". This is spherically symmetric, and
due to the last term we call it the Thomas-Fermi mean-field potential
(or just the TF potential).
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0@00

THE TF- AND TFMF-MODELS

In Thomas-Fermi theory for atoms the energy of the system is modelled by

where p > 0 is the electronic density. We denote the unique minimizer of
this functional p5* . This is radially symmetric and has J py" = Z, thus
describes a neutral atom. It is in this context natural to consider also the
potential ®LF (z) := Z/|x| — p5" * |z|~". This is spherically symmetric, and
due to the last term we call it the Thomas-Fermi mean-field potential
(or just the TF potential).

We introduce finally for each Z the Schrédinger operator
H = —A—-dL"

acting on L*(R?). Tt is essentially self-adjoint on CZ°(R*). We refer to its
self-adjoint closure as the Thomas-Fermi mean-field model for the atom.
QMATH



(Non-)Periodicity in 3 models

[e]e] le)

PERIODICITY OF LARGE ATOMS?

g What do we mean by periodicity of large atoms in these models?
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PERIODICITY OF LARGE ATOMS?
Q What do we mean by periodicity of large atoms in these models?

A: Convergence of relevant quantities only along particular sequences
of Z,’s. Preferably Z, ~ Cn®, cf. the periodic table.
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PERIODICITY OF LARGE ATOMS?
Q What do we mean by periodicity of large atoms in these models?

A: Convergence of relevant quantities only along particular sequences
of Z,’s. Preferably Z, ~ Cn®, cf. the periodic table.

Shrodinger theory

® Relevant quantities could be the one-particle density in a
ground state or the corresponding atomic radius.

e No known results or concrete conjectures (yet).
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(Non-)Periodicity in 3 models

[e]e] le)

PERIODICITY OF LARGE ATOMS?
Q What do we mean by periodicity of large atoms in these models?

A: Convergence of relevant quantities only along particular sequences
of Z,’s. Preferably Z, ~ Cn®, cf. the periodic table.

Shrodinger theory

® Relevant quantities could be the one-particle density in a
ground state or the corresponding atomic radius.

e No known results or concrete conjectures (yet).

Thomas-Fermi theory

Here the convergences

oz (x) — 234z % and @7 (x) — 817 |z|*

as Z — oo show the non-existence of (an obvious) periodicity.
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(Non-)Periodicity in 3 models

[e]e]e] )

PERIODICITY OF LARGE ATOMS?

In the TFMF-model we will study strong resolvent convergence. If
(A +3) " — (A+d) "

strongly as n — oo then one says that A,, — A in the strong resolvent sense.
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(Non-)Periodicity in 3 models

[e]e]e] )

PERIODICITY OF LARGE ATOMS?

In the TFMF-model we will study strong resolvent convergence. If
(Ap+14) " — (A+4)~"

strongly as n — oo then one says that A,, — A in the strong resolvent sense.

Theorem (Periodicity in TEFMF-model)

Consider a sequence {Zy}nZ; such that Z, — co as n — oco. Then
H;f is converging in the strong resolvent sense if and only if*

1 dTF 1/2 Z}L/3 oo
— / Zn (””2) dz = / 1" ()" dr =: Z)/* Da
AT? Jps || T Jo

is convergent modulo 1. Note that we can take Z,, ~ D;Sn?’ here.

“Using the notation ®%" (|z|) = &L ().

\. J
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Infinite TFMF-atoms

®0000

FORM OF THE INFINITE TEFMF-OPERATORS

We now discuss the limits of the sequences {H }f};’f’:l. For this we consider

the natural infinite counterpart of the HZ"’s, i.e. the operator

HY = —A =817z

At least this is well defined on the dense set C2°(R*\{0}) C L*(R®).
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Notice that the HXF’s are self-adjoint extensions of their restrictions to
C2°(R3*\{0}), providing a similar framework for finite Z.

f)MATH



Infinite TFMF-atoms

®0000

FORM OF THE INFINITE TFMF-OPERATORS

We now discuss the limits of the sequences {H Ef};’f:l. For this we consider

the natural infinite counterpart of the HZ"’s, i.e. the operator

HL = —A — 817 |z| %,

At least this is well defined on the dense set C2°(R*\{0}) C L*(R®).

Notice that the HZT’s are self-adjoint extensions of their restrictions to
C2°(R3*\{0}), providing a similar framework for finite Z.

TF
However, H,

® is not essentially self-adjoint,
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Infinite TFMF-atoms

®0000

FORM OF THE INFINITE TFMF-OPERATORS

We now discuss the limits of the sequences {H Ef};’f:l. For this we consider

the natural infinite counterpart of the HZ"’s, i.e. the operator

HL = —A — 817 |z| %,

At least this is well defined on the dense set C2°(R*\{0}) C L*(R®).

Notice that the HZT’s are self-adjoint extensions of their restrictions to
C2°(R3*\{0}), providing a similar framework for finite Z.

However, HIF
® is not essentially self-adjoint,
® is not bounded from below,
® has many and very similar self-adjoint extensions.

One needs to handle this problem as self-adjointness is fundamental in

Schrédinger’s theory.
QMATH



Infinite TFMF-atoms

0@000

ANGULAR MOMENTUM DECOMPOSITION

For a more precise description we need crucially the angular momentum
decomposition of Schrédinger operators with 3-dimensional radially
symmetric potentials, i.e. that for such operator H = —A 4+ V we can write

T e+ 1) A
H_ZEPO(—@jL — +V)f.§:9on

where the Hy’s act on L?(Ry). This is a key reduction of the problem.
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0@000

ANGULAR MOMENTUM DECOMPOSITION

For a more precise description we need crucially the angular momentum
decomposition of Schrédinger operators with 3-dimensional radially

symmetric potentials, i.e. that for such operator H = —A 4+ V we can write
=) 2 =)
d L(0+1)
Qs+ v =g

where the Hy’s act on L?(Ry). This is a key reduction of the problem. In
this way we can write

[e @) oo

TF TF TF TF

H; ZEBHZ»" and H, ZEBHOOJ'
=0 =0
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ANGULAR MOMENTUM DECOMPOSITION

For a more precise description we need crucially the angular momentum
decomposition of Schrédinger operators with 3-dimensional radially

symmetric potentials, i.e. that for such operator H = —A 4+ V we can write
=) 2 =)
d L(0+1)
Qs+ v =g

where the Hy’s act on L?(Ry). This is a key reduction of the problem. In
this way we can write
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TF TF TF TF
H; ~ EBHZJ and H ~ EBHOOvZ‘
=0 =0

e Self-adjoint extensions of all H,’s yield a self-adjoint extension of H.
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0@000

ANGULAR MOMENTUM DECOMPOSITION

For a more precise description we need crucially the angular momentum
decomposition of Schrédinger operators with 3-dimensional radially

symmetric potentials, i.e. that for such operator H = —A 4+ V we can write
=) 2 =)
d L(0+1)
Qs+ v =g

where the Hy’s act on L?(Ry). This is a key reduction of the problem. In
this way we can write

[e @) oo
TF TF TF TF
H; ~ EBHZJ and H ~ EBHOOvZ‘
=0 =0

e Self-adjoint extensions of all H,’s yield a self-adjoint extension of H.

® In this set-up, H}f converges towards (a self-adjoint extensions of)
HZIF if and only if this is the case in every angular momentum
component.
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Infinite TFMF-atoms

o]e] Je]e]

THE HALF-LINE OPERATORS

We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrédinger operators of the form —d?/dz? + W on L*(R;.) for real-valued
potentials W € L (Ry) (satisfying weak assumptions at co).
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We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrédinger operators of the form —d?/dz? + W on L*(R;.) for real-valued
potentials W € L (Ry) (satisfying weak assumptions at co).

@ Define the operator on Cg°(Ry) and take the closure to get Hmin-
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THE HALF-LINE OPERATORS

We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrédinger operators of the form —d?/dz? + W on L*(R;.) for real-valued
potentials W € L (Ry) (satisfying weak assumptions at co).

@ Define the operator on Cg°(Ry) and take the closure to get Hmin-

® Check whether the equation f” = W f has two linearly
independent solutions which are L? near the origin.
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THE HALF-LINE OPERATORS

We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrédinger operators of the form —d?/dz? + W on L*(R;.) for real-valued
potentials W € L (Ry) (satisfying weak assumptions at co).

@ Define the operator on Cg°(Ry) and take the closure to get Hmin-

® Check whether the equation f” = W f has two linearly
independent solutions which are L? near the origin.

o If this is not the case, Hy,y is self-adjoint.
e Otherwise, continue to...
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THE HALF-LINE OPERATORS

We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrédinger operators of the form —d?/dz? + W on L*(R;.) for real-valued
potentials W € L (Ry) (satisfying weak assumptions at co).

@ Define the operator on Cg°(Ry) and take the closure to get Hmin-

® Check whether the equation f” = W f has two linearly
independent solutions which are L? near the origin.

o If this is not the case, Hy,y is self-adjoint.
e Otherwise, continue to...

® Hmin has deficiency indices (1,1). Its self-adjoint extensions Hy are
described exactly by the domains D(Hy) = D(Hmin) ® CEf where f is
as above and real-valued, and where ¢ localizes near the origin.
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THE HALF-LINE OPERATORS

We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrédinger operators of the form —d?/dz? + W on L*(R;.) for real-valued
potentials W € L (Ry) (satisfying weak assumptions at co).

@ Define the operator on Cg°(Ry) and take the closure to get Hmin-

® Check whether the equation f” = W f has two linearly
independent solutions which are L? near the origin.

o If this is not the case, Hy,y is self-adjoint.
e Otherwise, continue to...

® Hmin has deficiency indices (1,1). Its self-adjoint extensions Hy are
described exactly by the domains D(Hy) = D(Hmin) ® CEf where f is
as above and real-valued, and where ¢ localizes near the origin.
Example 1: If W(z) = £(£+ 1)z~ for £ > 1 then f(z) = z~* solves
f’=Wfand f ¢ L*((0,1)). In this case Hmin is self-adjoint.
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THE HALF-LINE OPERATORS

We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrédinger operators of the form —d?/dz? + W on L*(R;.) for real-valued
potentials W € L (Ry) (satisfying weak assumptions at co).

@ Define the operator on Cg°(Ry) and take the closure to get Hmin-

® Check whether the equation f” = W f has two linearly
independent solutions which are L? near the origin.

o If this is not the case, Hy,y is self-adjoint.
e Otherwise, continue to...
® Hmin has deficiency indices (1,1). Its self-adjoint extensions Hy are
described exactly by the domains D(Hy) = D(Hmin) ® CEf where f is
as above and real-valued, and where ¢ localizes near the origin.
Example 1: If W(z) = £(£+ 1)z~ for £ > 1 then f(z) = z~* solves
f’=Wfand f ¢ L*((0,1)). In this case Hmin is self-adjoint.
Example 2: If W is sufficiently regular, the procedure in @) amounts to
putting boundary conditions at the origin.
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THE HALF-LINE OPERATORS

We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrédinger operators of the form —d?/dz? + W on L*(R;.) for real-valued
potentials W € L (Ry) (satisfying weak assumptions at co).

@ Define the operator on Cg°(Ry) and take the closure to get Hmin-

® Check whether the equation f” = W f has two linearly
independent solutions which are L? near the origin.

o If this is not the case, Hy,y is self-adjoint.
e Otherwise, continue to...

® Hmin has deficiency indices (1,1). Its self-adjoint extensions Hy are

described exactly by the domains D(Hy) = D(Hmin) ® CEf where f is
as above and real-valued, and where ¢ localizes near the origin.

Example 1: If W(z) = £(£+ 1)z~ for £ > 1 then f(z) = z~* solves

f’=Wfand f ¢ L*((0,1)). In this case Hmin is self-adjoint.

Example 2: If W is sufficiently regular, the procedure in @) amounts to

putting boundary conditions at the origin.

Example 3: If W(x) = —81n°2~* we can take f(z) = = - cos(2E — 9). @NUXTH

T



Infinite TFMF-atoms
[e]e]e] o]

THE INFINITE TFMF-ATOMS

Theorem

Consider a sequence {Z, }52;. The sequence of operators {H ZF}n , con-
verges in the strong resolvent sense towards a self-adjoint extension of
HZIF if and only if Z, — oo and

1 oo
f/ @) 2dr —s 7 (mod 1)
T Jo

as n — oo for some number 7. In the affirmative case the limiting oper-
ator H;FOFT is defined by the self-adjoint extensions of the HLF, “¢,min S With
domains D(Hoo,e,mm) @ C&Goo,e,- where ¢ is a localizing function and

oo = 0 5) () o ) ()

with j, and gy, the spherical Bessel-functions.

Note that in particular gee,0,r(z) o @ - cos(2ZZ — 7t — Z). @MATH



Infinite TFMF-atoms

(o]e]e]e] ]

THE INFINITE TEFMF-ATOMS: BONUS INFO

@ The map
S 3 (cos(2rm), sin(277)) — Hoo »

is a continuous parametrization of the infinite TFMF-atoms.
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THE INFINITE TEFMF-ATOMS: BONUS INFO

@ The map
S' 5 (cos(27m), sin(277)) — H;FOITT
is a continuous parametrization of the infinite TFMF-atoms.

@® The form of goo,¢,r comes from the expression

IS SR 2 U SN SR |
2 4 4+2-(-1) 4 4+2-(-4) 4
<I>1FF ~ |z|~! near 0 <I>'1TF ~ |z| ™% near co

mod 1.
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THE INFINITE TEFMF-ATOMS: BONUS INFO

@ The map
S' 5 (cos(27m), sin(277)) — H;FOI?T
is a continuous parametrization of the infinite TFMF-atoms.

@® The form of goo,¢,r comes from the expression

IS SR 2 U SN SR |
2 4 442-(-1) 4 442 (—4) 4
<I>1FF ~ |z|~! near 0 <I>'1TF ~ |z| ™% near co

mod 1. Here, the different contributions come from an analysis of the
“regular” solutions to the equation

00+ 1)
ZB2

on intervals (0, (Ze(Z))™1), (Ze(Z))™*,e(2Z)) and (¢(Z), o0)
respectively, with €(Z) — 0 very slowly as Z — oc.

fz.e=[-®7" +

1 fz.e
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.

DIRECTIONS FOR FURTHER RESEARCH

@ Studying asymptotic periodicity in more advanced models. A starting
point could be considering a "Thomas-Fermi-von Weizsécker
mean-field model". Here it is known that

TV (1) Z—roo, W (z) = 817 2|~ + Oppy—o(l2]7?)

for small x. Also, one could study real-valued quantities in more
advanced models as for example the atomic radius in Hartree-Fock
theory.
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mean-field model". Here it is known that

TV () _Zoeo, LWV () = 81|zt + 0\z|—r0(|x|72)

for small x. Also, one could study real-valued quantities in more
advanced models as for example the atomic radius in Hartree-Fock
theory.

@® Determining whether norm resolvent convergence can occur in the
Thomas-Fermi mean-field model. We do have an example where it
does not.
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Outlook
.

DIRECTIONS FOR FURTHER RESEARCH

@ Studying asymptotic periodicity in more advanced models. A starting
point could be considering a "Thomas-Fermi-von Weizsécker
mean-field model". Here it is known that

TV () _Zoeo, LWV () = 81|zt + 0\z|—r0(|x|72)

for small x. Also, one could study real-valued quantities in more
advanced models as for example the atomic radius in Hartree-Fock
theory.

@® Determining whether norm resolvent convergence can occur in the

Thomas-Fermi mean-field model. We do have an example where it
does not.

® Spectral studies of the infinite atoms H;FOFT

e Discrete spectrum below 0 7
e Spectral gap below 0 7
o Asymptotics of large negative eigenvalues.
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Thank you for your attention!
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