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The periodic table
Group
Period

1

2

3

4

5

6

7

1

1
H

3
Li

11
Na

19
K

37
Rb

55
Cs

87
Fr

2

4
Be

12
Mg

20
Ca

38
Sr

56
Ba

88
Ra

*

*
*

*

*
*

3

21
Sc

39
Y

71
Lu

103
Lr

57
La

89
Ac

4

22
Ti

40
Zr

72
Hf

104
Rf

58
Ce

90
Th

5

23
V

41
Nb

73
Ta

105
Db

59
Pr

91
Pa

6

24
Cr

42
Mo

74
W

106
Sg

60
Nd

92
U

7

25
Mn

43
Tc

75
Re

107
Bh

61
Pm

93
Np

8

26
Fe

44
Ru

76
Os

108
Hs

62
Sm

94
Pu

9

27
Co

45
Rh

77
Ir

109
Mt

63
Eu

95
Am

10

28
Ni

46
Pd

78
Pt

110
Ds

64
Gd

96
Cm

11

29
Cu

47
Ag

79
Au

111
Rg

65
Tb

97
Bk

12

30
Zn

48
Cd

80
Hg

112
Cn

66
Dy

98
Cf

13

5
B

13
Al

31
Ga

49
In

81
Tl

113
Nh

67
Ho

99
Es

14

6
C

14
Si

32
Ge

50
Sn

82
Pb

114
Fl

68
Er

100
Fm

15

7
N

15
P

33
As

51
Sb

83
Bi

115
Mc

69
Tm

101
Md

16

8
O

16
S

34
Se

52
Te

84
Po

116
Lv

70
Yb

102
No

17

9
F

17
Cl

35
Br

53
I

85
At

117
Ts

18

2
He

10
Ne

18
Ar

36
Kr

54
Xe

86
Rn

118
Og

As its name suggests, one of the key features of the periodic table is the
fact that that it illustrates a periodicity of the properties of the elements.
Elements in the same group are chemically "more similar" than elements
from different groups.

Blindly continuing this periodicity in the Z →∞ limit leads to the
asymptotic formula Zn ≈ n3/6 for the atomic numbers when "leaving"
the red block.



The periodic table (Non-)Periodicity in 3 models Infinite TFMF-atoms Outlook

The periodic table
Group
Period

1

2

3

4

5

6

7

1

1
H

3
Li

11
Na

19
K

37
Rb

55
Cs

87
Fr

2

4
Be

12
Mg

20
Ca

38
Sr

56
Ba

88
Ra

*

*
*

*

*
*

3

21
Sc

39
Y

71
Lu

103
Lr

57
La

89
Ac

4

22
Ti

40
Zr

72
Hf

104
Rf

58
Ce

90
Th

5

23
V

41
Nb

73
Ta

105
Db

59
Pr

91
Pa

6

24
Cr

42
Mo

74
W

106
Sg

60
Nd

92
U

7

25
Mn

43
Tc

75
Re

107
Bh

61
Pm

93
Np

8

26
Fe

44
Ru

76
Os

108
Hs

62
Sm

94
Pu

9

27
Co

45
Rh

77
Ir

109
Mt

63
Eu

95
Am

10

28
Ni

46
Pd

78
Pt

110
Ds

64
Gd

96
Cm

11

29
Cu

47
Ag

79
Au

111
Rg

65
Tb

97
Bk

12

30
Zn

48
Cd

80
Hg

112
Cn

66
Dy

98
Cf

13

5
B

13
Al

31
Ga

49
In

81
Tl

113
Nh

67
Ho

99
Es

14

6
C

14
Si

32
Ge

50
Sn

82
Pb

114
Fl

68
Er

100
Fm

15

7
N

15
P

33
As

51
Sb

83
Bi

115
Mc

69
Tm

101
Md

16

8
O

16
S

34
Se

52
Te

84
Po

116
Lv

70
Yb

102
No

17

9
F

17
Cl

35
Br

53
I

85
At

117
Ts

18

2
He

10
Ne

18
Ar

36
Kr

54
Xe

86
Rn

118
Og

As its name suggests, one of the key features of the periodic table is the
fact that that it illustrates a periodicity of the properties of the elements.
Elements in the same group are chemically "more similar" than elements
from different groups.
Blindly continuing this periodicity in the Z →∞ limit leads to the
asymptotic formula Zn ≈ n3/6 for the atomic numbers when "leaving"
the red block.



The periodic table (Non-)Periodicity in 3 models Infinite TFMF-atoms Outlook

Schrödinger theory for atoms

We will throughout our presentation ignore relativistic effects and use units
in which e = 2me = ~ = 1. With these choices, the Schrödinger
Hamiltonian

HZ =
Z∑
i=1

(
−∆i −

Z

|xi|
+

1

2

∑
j 6=i

1

|xi − xj |

)
is believed to describe the behaviour of neutral atoms. Here,

(x1, . . . , xZ) ∈ (R3)Z ,

and the operator HZ acts on the antisymmetric (fermionic) subspace of the
Hilbert space L2(R3;C2)⊗Z including 2 spin degrees of freedom.

• In the ideal world, we would be able to detect a periodicity in HZ as
Z →∞, but...

• Taking the Z →∞ limit in Schrödinger theory is notoriously difficult.
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The TF- and TFMF-models

In Thomas-Fermi theory for atoms the energy of the system is modelled by

ETFZ [ρ] =

∫
R3

cTFρ(x)5/3 − Zρ(x)

|x| dx+
1

2

∫
R3

∫
R3

ρ(x)ρ(y)

|x− y| dx dy

where ρ ≥ 0 is the electronic density. We denote the unique minimizer of
this functional ρTFZ . This is radially symmetric and has

∫
ρTFZ = Z, thus

describes a neutral atom.

It is in this context natural to consider also the
potential ΦTF

Z (x) := Z/|x| − ρTFZ ∗ |x|−1. This is spherically symmetric, and
due to the last term we call it the Thomas-Fermi mean-field potential
(or just the TF potential).

We introduce finally for each Z the Schrödinger operator

HTF
Z := −∆− ΦTF

Z

acting on L2(R3). It is essentially self-adjoint on C∞c (R3). We refer to its
self-adjoint closure as the

::::::::::::
Thomas-Fermi

:::::::::
mean-field

:::::
model

:::
for

:::
the

:::::
atom.
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Periodicity of large atoms?
Q: What do we mean by periodicity of large atoms in these models?

A: Convergence of relevant quantities only along particular sequences
of Zn’s. Preferably Zn ∼ Cn3, cf. the periodic table.

Shrödinger theory

• Relevant quantities could be the one-particle density in a
ground state or the corresponding atomic radius.

• No known results or concrete conjectures (yet).

Thomas-Fermi theory

Here the convergences

ρTFZ (x) −→ 234π|x|−6 and ΦTF
Z (x) −→ 81π2|x|−4

as Z →∞ show the non-existence of (an obvious) periodicity.



The periodic table (Non-)Periodicity in 3 models Infinite TFMF-atoms Outlook

Periodicity of large atoms?
Q: What do we mean by periodicity of large atoms in these models?

A: Convergence of relevant quantities only along particular sequences
of Zn’s. Preferably Zn ∼ Cn3, cf. the periodic table.

Shrödinger theory

• Relevant quantities could be the one-particle density in a
ground state or the corresponding atomic radius.

• No known results or concrete conjectures (yet).

Thomas-Fermi theory

Here the convergences

ρTFZ (x) −→ 234π|x|−6 and ΦTF
Z (x) −→ 81π2|x|−4

as Z →∞ show the non-existence of (an obvious) periodicity.



The periodic table (Non-)Periodicity in 3 models Infinite TFMF-atoms Outlook

Periodicity of large atoms?
Q: What do we mean by periodicity of large atoms in these models?

A: Convergence of relevant quantities only along particular sequences
of Zn’s. Preferably Zn ∼ Cn3, cf. the periodic table.

Shrödinger theory

• Relevant quantities could be the one-particle density in a
ground state or the corresponding atomic radius.

• No known results or concrete conjectures (yet).

Thomas-Fermi theory

Here the convergences

ρTFZ (x) −→ 234π|x|−6 and ΦTF
Z (x) −→ 81π2|x|−4

as Z →∞ show the non-existence of (an obvious) periodicity.



The periodic table (Non-)Periodicity in 3 models Infinite TFMF-atoms Outlook

Periodicity of large atoms?
Q: What do we mean by periodicity of large atoms in these models?

A: Convergence of relevant quantities only along particular sequences
of Zn’s. Preferably Zn ∼ Cn3, cf. the periodic table.

Shrödinger theory

• Relevant quantities could be the one-particle density in a
ground state or the corresponding atomic radius.

• No known results or concrete conjectures (yet).

Thomas-Fermi theory

Here the convergences

ρTFZ (x) −→ 234π|x|−6 and ΦTF
Z (x) −→ 81π2|x|−4

as Z →∞ show the non-existence of (an obvious) periodicity.



The periodic table (Non-)Periodicity in 3 models Infinite TFMF-atoms Outlook

Periodicity of large atoms?
In the TFMF-model we will study strong resolvent convergence. If

(An + i)−1 −→ (A+ i)−1

strongly as n→∞ then one says that An → A in the strong resolvent sense.

Theorem (Periodicity in TFMF-model)

Consider a sequence {Zn}∞n=1 such that Zn → ∞ as n → ∞. Then
HTF
Zn

is converging in the strong resolvent sense if and only ifa

1

4π2

∫
R3

ΦTF
Zn

(x)1/2

|x|2 dx =
Z

1/3
n

π

∫ ∞
0

ΦTF
1 (r)1/2 dr =: Z1/3

n Dcl

is convergent modulo 1. Note that we can take Zn ≈ D−3
cl n

3 here.

aUsing the notation ΦTF
Z (|x|) = ΦTF

Z (x).
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Form of the infinite TFMF-operators

We now discuss the limits of the sequences {HTF
Zn
}∞n=1. For this we consider

the natural infinite counterpart of the HTF
Z ’s, i.e. the operator

HTF
∞ := −∆− 81π2|x|−4.

At least this is well defined on the dense set C∞c (R3\{0}) ⊆ L2(R3).

Notice that the HTF
Z ’s are self-adjoint extensions of their restrictions to

C∞c (R3\{0}), providing a similar framework for finite Z.

However, HTF
∞

• is not essentially self-adjoint,

• is not bounded from below,

• has many and very similar self-adjoint extensions.

One needs to handle this problem as self-adjointness is fundamental in
Schrödinger’s theory.
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Angular momentum decomposition
For a more precise description we need crucially the angular momentum
decomposition of Schrödinger operators with 3-dimensional radially
symmetric potentials, i.e. that for such operator H = −∆ + V we can write

H '
∞⊕
`=0

(
− d2

dx2
+
`(`+ 1)

x2
+ V

)
=:

∞⊕
`=0

H`

where the H`’s act on L2(R+). This is a key reduction of the problem.

In
this way we can write

HTF
Z '

∞⊕
`=0

HTF
Z,` and HTF

∞ '
∞⊕
`=0

HTF
∞,`.

• Self-adjoint extensions of all H`’s yield a self-adjoint extension of H.

• In this set-up, HTF
Zn

converges towards (a self-adjoint extensions of)
HTF
∞ if and only if this is the case in every angular momentum

component.
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The half-line operators
We briefly describe the theory of self-adjoint realizations of one-dimensional
Schrödinger operators of the form −d2/dx2 +W on L2(R+) for real-valued
potentials W ∈ L2

loc(R+) (satisfying weak assumptions at ∞).

1 Define the operator on C∞c (R+) and take the closure to get Hmin.

2 Check whether the equation f ′′ = Wf has two linearly
independent solutions which are L2 near the origin.

• If this is not the case, Hmin is self-adjoint.
• Otherwise, continue to...

3 Hmin has deficiency indices (1, 1). Its self-adjoint extensions Hf are
described exactly by the domains D(Hf ) = D(Hmin)⊕ Cξf where f is
as above and real-valued, and where ξ localizes near the origin.

Example 1: If W (x) = `(`+ 1)x−2 for ` ≥ 1 then f(x) = x−` solves
f ′′ = Wf and f /∈ L2((0, 1)). In this case Hmin is self-adjoint.
Example 2: If W is sufficiently regular, the procedure in 3© amounts to
putting boundary conditions at the origin.
Example 3: If W (x) = −81π2x−4 we can take f(x) = x · cos( 9π

x
− θ).
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The infinite TFMF-atoms
Theorem

Consider a sequence {Zn}∞n=1. The sequence of operators {HTF
Zn
}∞n=1 con-

verges in the strong resolvent sense towards a self-adjoint extension of
HTF
∞ if and only if Zn →∞ and

1

π

∫ ∞
0

(ΦTF
Zn

)1/2 dr −→ τ (mod 1)

as n → ∞ for some number τ . In the affirmative case the limiting oper-
ator HTF

∞,τ is defined by the self-adjoint extensions of the HTF
∞,`,min’s with

domains D(HTF
∞,`,min)⊕ Cξg∞,`,τ where ξ is a localizing function and

g∞,`,τ (x) = sin
(
τπ +

`π

2
+

π

4

)
· j`
(9π

x

)
− cos

(
τπ +

`π

2
+

π

4

)
· y`
(9π

x

)
with j` and y` the spherical Bessel-functions.

Note that in particular g∞,0,τ (x) ∝ x · cos( 9π
x
− τπ− π

4
).
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The infinite TFMF-atoms: Bonus info

1 The map
S1 3 (cos(2τπ), sin(2τπ)) 7−→ HTF

∞,τ

is a continuous parametrization of the infinite TFMF-atoms.

2 The form of g∞,`,τ comes from the expression

τ +
`

2
+

1

4
= − 2`+ 1

4 + 2 · (−1)
− 1

4︸ ︷︷ ︸
ΦTF

1 ∼ |x|−1 near 0

+τ − 2`+ 1

4 + 2 · (−4)
− 1

4︸ ︷︷ ︸
ΦTF

1 ∼ |x|−4 near ∞

mod 1. Here, the different contributions come from an analysis of the
“regular” solutions to the equation

f ′′Z,` =
[
−ΦTF

Z +
`(`+ 1)

x2

]
fZ,`

on intervals (0, (Zε(Z))−1), ((Zε(Z))−1, ε(Z)) and (ε(Z),∞)
respectively, with ε(Z)→ 0 very slowly as Z →∞.
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Directions for further research

1 Studying asymptotic periodicity in more advanced models. A starting
point could be considering a "Thomas-Fermi-von Weizsäcker
mean-field model". Here it is known that

ΦTFW
Z (x)

Z→∞−−−−−−−→ ΦTFW
∞ (x) = 81π2|x|−4 +O|x|→0(|x|−2)

for small x. Also, one could study real-valued quantities in more
advanced models as for example the atomic radius in Hartree-Fock
theory.

2 Determining whether norm resolvent convergence can occur in the
Thomas-Fermi mean-field model. We do have an example where it
does not.

3 Spectral studies of the infinite atoms HTF
∞,τ .

• Discrete spectrum below 0 ?
• Spectral gap below 0 ?
• Asymptotics of large negative eigenvalues.
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Thank you for your attention!
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