Evolving Notes by Felix Otto for ISTA summer school, version July 28th 2022

These are evolving notes; they present selected aspects of the work arXiv:2112.10739 (with P. Linares, M. Tempelmayr, and P. Tsatsoulis) with additional motivation. For a simpler setting, we also recommend to have a look at arXiv:2207.10627 (with P. Linares). The algebraic aspects are worked out in arXiv:2103.04187 (with P. Linares and M. Tempelmayr). Thanks to Markus Tempelmayr and Kihoon Seong for proofreading.

1. A singular quasi-linear SPDE

We are interested in nonlinear elliptic or parabolic equations with a random and thus typically rough right hand side ξ . Our goal is to move beyond the well-studied semi-linear case. We consider a mildly quasi-linear case where the coefficients of the leading-order derivatives depend on the solution u itself. To fix ideas, we focus on the parabolic case in a single space dimension; since we treat the parabolic equation in the whole space-time like an anisotropic elliptic equation, we denote by x_1 the space-like and by x_2 the time-like variable. Hence we propose to consider

ao22 (1)
$$(\partial_2 - \partial_1^2)u = a(u)\partial_1^2 u + \xi,$$

where we think of the values a_0 of a(u) to be so small such that $\partial_2 - a_0 \partial_1^2$ is parabolic. We are interested in laws / ensembles of ξ where the solutions v to the linear equation

ao25 (2)
$$(\partial_2 - \partial_1^2)v = \xi$$

are (almost surely) Hölder continuous with exponent $\alpha \in (0, 1)$. In view of the parabolic nature, Hölder continuity is measured w. r. t. the Carnot-Carathéodory distance

(3)

"
$$|y - x|$$
" := $|y_1 - x_1| + \sqrt{|y_2 - x_2|}$.

By Schauder theory for $\partial_2 - \partial_1^2$, which we shall expand on below, this is the case when ξ is in the (negative) Hölder space $C^{\alpha-2}$. We note that this range includes white noise ξ , since the latter is in $C^{-\frac{D}{2}-}$, where Dis the effective (space-time) dimension, which in our parabolic case is D = 1 + 2 = 3, see Subsection 2 for more details.

In the range of $\alpha \in (0,1)$, the SPDE $(\stackrel{|ao22}{|I|})$ is what is "singular": We cannot expect the product $a(u)\partial_1^2 u$ to be canonically defined. Indeed, at least for smooth a, we may hope for $a(u) \in C^{\alpha}$, but we cannot hope for more than $\partial_1^2 u \in C^{\alpha-2}$. Hence for $\alpha < 1$, the function a(u) is less regular then the distribution $\partial_1^2 u$ is irregular.

The same feature occurs for the (semi-linear) multiplicative heat equation $(\partial_2 - \partial_1^2)u = a(u)\xi$; in fact, our approach also applies to this semi-linear case, which already has been treated by (standard) regularity structures in Hairer-Pardoux '15. A singular product is already present in the case when the x_1 -dependence is suppressed, so that the above semi-linear equation turns into the SDE $\frac{du}{dx_2} = a(u)\xi$ with white noise ξ in the time-like variable x_2 . In this case, the analogue of v from (2) is Brownian motion, which is known to be Hölder continuous with exponent $\frac{1}{2}$ – in x_2 , which in view of (3) corresponds to the border-line setting $\alpha = 1-$. Ito's integral and, more recently, rough paths (Lyons) and controlled rough path (Gubinelli) have been devised to tackle the issue in this setting.

sec:Schauder

2. Annealed Schauder Theory

This section provides the main (linear) PDE ingredient for our result. At the same time, it will allow us to discuss (3).

In view of $(\overset{ao79}{B})$, we are interested in the fundamental solution of the differential operator $A := \partial_2 - \partial_1^2$. It turns out to be convenient to use the more symmetric¹ fundamental solution of $A^*A = (-\partial_2 - \partial_1^2)(\partial_2 - \partial_1^2)$ $= \partial_1^4 - \partial_2^2$. Moreover, it will be more transparent to "disintegrate" the latter fundamental solution, by which we mean writing it as $\int_0^\infty dt \psi_t(z)$, where $\{\psi_t\}_{t>0}$ are the kernels of the semi-group $\exp(-tA^*A)$ generated by the non-negative operator A^*A . Clearly, the Fourier transform $\mathcal{F}\psi_t(q)$ is given by $= \exp(-t(q_1^4 + q_2^2))$; in particular, ψ_t is a Schwartz function. For a Schwartz distribution f like realizations of white noise, we thus define $f_t(y)$ as the pairing of f with $\psi_t(y - \cdot)$; f_t is a smooth function. On the level of these kernels, the semi-group property translates into

ao36 (4)
$$\psi_s * \psi_t = \psi_{s+t}$$
 and $\int \psi_t = 1.$

By scale invariance under $x_1 = \lambda \hat{x}_1$, $x_2 = \lambda^2 \hat{x}_2$, and $t = \lambda^4 \hat{t}$, we have

ao37 (5)
$$\psi_t(x_1, x_2) = \frac{1}{(\sqrt[4]{t})^{D=3}} \psi_1(\frac{x_1}{\sqrt[4]{t}}, \frac{x_2}{(\sqrt[4]{t})^2}).$$

By construction, ψ satisfies the PDE

ao80 (6)
$$\partial_t \psi_t + (\partial_1^4 - \partial_2^2) \psi_t = 0.$$

lem:int Lemma 1. Let $0 < \alpha \leq \eta < \infty$ with $\eta \notin \mathbb{Z}$, $p < \infty$, and $x \in \mathbb{R}^2$ be given. For a random Schwartz distribution f with

ao76 (7)
$$\mathbb{E}^{\frac{1}{p}} |f_t(y)|^p \leq (\sqrt[4]{t})^{\alpha-2} (\sqrt[4]{t} + |y-x|)^{\eta-\alpha}$$
 for all $t > 0, y \in \mathbb{R}^2$
there exists a unique random function u of the class

$$\begin{bmatrix} \texttt{ao55} \end{bmatrix} (8) \qquad \qquad \sup_{y \in \mathbb{R}^2} \frac{1}{|y - x|^\eta} \mathbb{E}^{\frac{1}{p}} |u(y)|^p < \infty$$

¹it is symmetric under reflection space and time

satisfying (distributionally in \mathbb{R}^2)

(9) $(\partial_2 - \partial_1^2)u = f + polynomial of degree \leq \eta - 2.$ It actually satisfies (9) without the polynomial. Moreover, the l. h. s. of (8) is bounded by a constant only depending on α and η .

Now white noise ξ is an example of such a random Schwartz distribution: Since $\xi_t(y)$ is a centered Gaussian, we have $\mathbb{E}^{\frac{1}{p}} |\xi_t(y)|^p \lesssim_p \mathbb{E}^{\frac{1}{2}} (\xi_t(y))^2$. By the characterizing property of white noise, we have $\mathbb{E}^{\frac{1}{2}} (\xi_t(y))^2 = (\int \psi_t^2(y-\cdot))^{\frac{1}{2}}$, which by scaling $(\frac{|ao37}{5})$ is equal to

$$\left(\frac{1}{\sqrt[4]{t}}\right)^{\frac{D}{2}} \left(\int \psi_1^2\right)^{\frac{1}{2}} \sim \left(\frac{1}{\sqrt[4]{t}}\right)^{\frac{3}{2}},$$

which can be interpreted as stating that in an annealed sense, ξ is in the Hölder class $C^{-\frac{D}{2}}$. Hence the assumptions of Lemma I are satisfied with $\alpha = \eta = \frac{1}{2}$.

Fixing a "base-point" x, Lemma $\frac{\text{lem:int}}{\text{l thus constructs the solution of }} \left(\frac{ao25}{2}\right)$ distinguished by v(x) = 0. Note that the output $\binom{ao25}{8}$ takes the form of $\mathbb{E}^{\frac{1}{p}}|v(y) - v(x)|^p \lesssim_p |y - x|^{\frac{1}{2}}$, which amounts to a Hölder continuity condition, centered in x, and in an annealed sense. Hence Lemma $\frac{\text{lem:int}}{\text{l provides an annealed version of a Schauder estimate, alongside a$ Liouville-type uniqueness result.

PROOF OF LEMMA $\stackrel{\text{lem:int}}{\text{I By construction}}$, $\int_0^\infty dt (-\partial_2 - \partial_1^2) \psi_t$ is the fundamental solution of $\partial_2 - \partial_1^2$, so that we take the convolution of it with f. However, in order to obtain a convergent expression for $t \uparrow \infty$, we need to pass to a Taylor remainder:

ao74 (10)
$$u = \int_0^\infty dt (\operatorname{id} - \mathcal{T}_x^\eta) (-\partial_2 - \partial_1^2) f_t,$$

where T_x^{η} the operation of taking the Taylor polynomial of order $\leq \eta$; as we shall argue the additional Taylor polynomial does not affect the PDE. We claim that (10) is well-defined and estimated as

$$\mathbb{E}^{\frac{1}{p}}|u(y)|^{p} \lesssim |y-x|^{\eta}.$$

To this purpose, we first note that

ao77 (11)
$$\mathbb{E}^{\frac{1}{p}} |\partial^{\mathbf{n}} f_t(y)|^p \lesssim (\sqrt[4]{t})^{\alpha - 2 - |\mathbf{n}|} (\sqrt[4]{t} + |y - x|)^{\eta - \alpha},$$

where

ao26 (12)
$$\partial^{\mathbf{n}} u := \partial_1^{n_1} \partial_2^{n_2} u$$
 and $|\mathbf{n}| = n_1 + 2n_2$.

Indeed, by the semi-group property $(\overset{|ao36}{4})$ we may write $\partial^{\mathbf{n}} f_t(y) = \int dz$ $\partial^{\mathbf{n}} \psi_{\frac{t}{2}}(y-z) f_{\frac{t}{2}}(z)$, so that $\mathbb{E}^{\frac{1}{p}} |\partial^{\mathbf{n}} f_t(y)|^p \leq \int dz |\partial^{\mathbf{n}} \psi_{\frac{t}{2}}(y-z)| \mathbb{E}^{\frac{1}{p}} |f_{\frac{t}{2}}(z)|^p$. Hence by (7), (11) follows from the kernel bound $\int dz \ |\partial^{\mathbf{n}} \psi_{\frac{t}{2}}(y-z)|$

ao56

 $(\sqrt[4]{t} + |y - x|)^{\eta - \alpha} \lesssim (\sqrt[4]{t})^{-|\mathbf{n}|} (\sqrt[4]{t} + |y - x|)^{\eta - \alpha}$, which itself is a consequence of the scaling (b) and the fact that $\psi_{\frac{1}{2}}$ is a Schwartz function.

Equipped with $(\stackrel{|\mathbf{a}077}{|\mathbf{III}\rangle}$, we now derive two estimates for the integrand of $(\stackrel{|\mathbf{a}074}{|\mathbf{III}\rangle}$, namely for $\sqrt[4]{t} \geq |y - x|$ ("far field") and for $\sqrt[4]{t} \leq |y - x|$ ("near field"). We write the Taylor remainder $(\operatorname{id} - \operatorname{T}^{\eta}_{x})(\partial_{2} + \partial_{1}^{2})f_{t}(y)$ as a linear combination of $(y - x)^{\mathbf{n}}\partial^{\mathbf{n}}(\partial_{2} + \partial_{1}^{2})f_{t}(z)$ with $|\mathbf{n}| > \eta$ and at some point z intermediate to y and x. By $(\stackrel{|\mathbf{III}\rangle}{|\mathbf{III}\rangle}$ such a term is estimated by $|y - x|^{|\mathbf{n}|}(\sqrt[4]{t})^{\alpha-4-|\mathbf{n}|}(\sqrt[4]{t} + |y - x|)^{\eta-\alpha}$, which in the far field is $\sim |y - x|^{|\mathbf{n}|}(\sqrt[4]{t})^{\eta-4-|\mathbf{n}|}$. Since the exponent on t is < -1, we obtain as desired

$$\mathbb{E}^{\frac{1}{p}} \int_{|y-x|^4}^{\infty} dt (\mathrm{id} - \mathrm{T}^{\eta}_x) (\partial_2 + \partial_1^2) f_t(y) |^p \lesssim |y-x|^{\eta}.$$

For the near-field term, i. e. for $\sqrt[4]{t} \leq |y - x|$, we proceed as

$$\mathbb{E}^{\frac{1}{p}} |(\mathrm{id} - \mathrm{T}^{\eta}_{x})(\partial_{2} + \partial_{1}^{2})f_{t}(y)|^{p} \\
\leq \mathbb{E}^{\frac{1}{p}} |(\partial_{2} + \partial_{1}^{2})f_{t}(y)|^{p} + \sum_{|\mathbf{n}| \leq \eta} |y - x|^{|\mathbf{n}|} \mathbb{E}^{\frac{1}{p}} |\partial^{\mathbf{n}}(\partial_{2} + \partial_{1}^{2})f_{t}(x)|^{p} \\
\stackrel{(\mathbf{ao}77)}{\overset{(\mathbf{n}1)}{\lesssim}} (\sqrt[4]{t})^{\alpha - 4} |y - x|^{\eta - \alpha} + \sum_{|\mathbf{n}| \leq \eta} |y - x|^{|\mathbf{n}|} (\sqrt[4]{t})^{\eta - 4 - |\mathbf{n}|}.$$

Since η is not an integer, the sum restricts to $|\mathbf{n}| < \eta$, so that all exponents on t are > -1. Hence we obtain as desired

$$\mathbb{E}^{\frac{1}{p}} \int_{0}^{|y-x|^4} dt (\mathrm{id} - \mathrm{T}^{\eta}_x) (\partial_2 + \partial_1^2) f_t(y) |^p \lesssim |y-x|^{\eta}.$$

We return to the discussion of the singular product, in its simplest form of

$$v\partial_1^2 v = \partial_1^2 \frac{1}{2}v^2 - (\partial_1 v)^2.$$

While in view of Lemma $\frac{||em:int|}{||the||first||r.the||}$ here is well-defined as a Schwartz distribution, we now argue that the second term diverges. Since it has a sign, it diverges as a distribution iff it diverges as a function; hence it is enough to argue that its pointwise expectation diverges. Indeed, applying ∂_1 to the representation formula ($|10\rangle$, so that the constant Taylor term drops out, we have

ao30 (13)
$$\partial_1 v = \int_0^\infty dt \partial_1 (-\partial_2 - \partial_1^2) \xi_t.$$

²where $x^{\mathbf{n}} := x_1^{n_1} x_2^{n_2}$

We note that for the integrand

$$\mathbb{E}^{\frac{1}{2}} (\partial_1 (-\partial_2 - \partial_1^2) \xi_t(y))^2 = \left(\int (\partial_1 (-\partial_2 - \partial_1^2) \psi_t)^2 \right)^{\frac{1}{2}} = (\sqrt[4]{t})^{-3 - \frac{D}{2}} \left(\int (\partial_1 (-\partial_2 - \partial_1^2) \psi_1)^2 \right)^{\frac{1}{2}} \sim t^{-\frac{9}{8}}.$$

Hence $(\stackrel{|ao30}{|13)}$, evaluated in a point y, diverges w. r. t. $\mathbb{E}^{\frac{1}{2}} | \cdot |^2$ – while it converges as a Schwartz distribution.

In this sense we have $\mathbb{E}(\partial_1 v(y))^2 = +\infty$; in view of $(\stackrel{|a 0 81}{|14})$, this divergence arises from $t \downarrow 0$, that is, from small space/time scales, and thus is called an ultra-violet (UV) divergence. A quick fix is to introduce an UV cut-off, which for instance can be implemented by mollifying ξ . Using the semi-group convolution ξ_{τ} specifies the UV cut-off scale to be of the order of $\sqrt[4]{\tau}$. It is easy to check that in this case

$$\mathbb{E}(\partial_1 v(y))^2 \sim (\sqrt[4]{\tau})^{-\frac{1}{2}}.$$

The goal is to modify the equation $\begin{pmatrix} a & 2\\ I \end{pmatrix}$ "counter terms" such that

- the solution manifold stays under control as the ultra-violet cut-off $\tau \downarrow 0$.
- invariances of the solution manifold are preserved

In view of the above discussion, we expect the coefficients of the counter terms to diverge as the cut-off tends to zero.

sec:post

3. Postulates on the form of the counter terms

In view of $\alpha \in (0, 1)$, u is a function while we think of all derivatives $\partial^{\mathbf{n}} u$ as being only Schwartz distributions. Hence it is natural to start from the very general Ansatz that the counter term is a polynomial in $\{\partial^{\mathbf{n}} u\}_{\mathbf{n}\neq\mathbf{0}}$ with coefficients that are general (local) functions in u:

ao23 (15)
$$(\partial_2 - \partial_1^2)u + \sum_{\beta} h_{\beta}(u) \prod_{\mathbf{n}\neq\mathbf{0}} (\partial^{\mathbf{n}}u)^{\beta(\mathbf{n})} = a(u)\partial_1^2 u + \xi,$$

where β runs over all multi-indices³ in $\mathbf{n} \neq \mathbf{0}$.

Only counter terms that have an order strictly below the order of the leading $\partial_2 - \partial_1^2$ are desirable, so that one postulates that the sum in (15) restricts to those multi-indices for which

cw14 (16)
$$|\beta|_p := \sum_{\mathbf{n}\neq \mathbf{0}} |\mathbf{n}|\beta(\mathbf{n}) < 2.$$

³which associate to every index $\mathbf{n} \ a \ \beta(\mathbf{n}) \in \mathbb{N}_0$ such that $\beta(\mathbf{n})$ vanishes for all but finitely many \mathbf{n} 's

This leaves only $\beta = 0$ and $\beta = e_{(1,0)}$, where the latter means $\beta(\mathbf{n}) = \delta_{\mathbf{n}}^{(1,0)}$, so that (15) collapses to

ao24 (17)
$$(\partial_2 - \partial_1^2)u + h(u) + h'(u)\partial_1 u = a(u)\partial_1^2 u + \xi.$$

One also postulates that h and h' depend on the noise ξ only through its law / distribution / ensemble, hence are deterministic. Since we assume that the law is invariant under space-time translation, i. e. is stationary, it was natural to postulate that h and h' do not explicitly depend on x, hence are homogeneous.

REFLECTION SYMMETRY. Let us now assume that

the law of ξ is invariant under space-time translation $y \mapsto y + x$ **ao30bis** (18) and space reflection $y \mapsto (-y_1, y_2)$.

We now argue that under this assumption, it is natural to postulate that the term $h'(u)\partial_1 u$ in (17) is not present, so that we are left with

ao27 (19)
$$(\partial_2 - \partial_1^2)u + h(u) = a(u)\partial_1^2 u + \xi.$$

To this purpose, let $x \in \mathbb{R}^2$ be arbitrary yet fixed, and consider the reflection at the line $\{y_1 = x_1\}$ given by $Ry = (2x_1 - y_{d_2}y_2)$, which by pull back acts on functions as $\tilde{u}(y) = u(Ry)$. Since (II) features no explicit y-dependence, and only involves even powers of ∂_1 , which like ∂_2 commute with R, we have

ao29 (20)
$$(u,\xi)$$
 satisfies $(\stackrel{ao22}{I}) \implies (\tilde{u},\tilde{\xi})$ satisfies $(\stackrel{ao22}{I})$.

Since we postulated that h and $h'_{a030bis}$ depend on ξ only via its law, and since in view of the assumption (II8), ξ has the same law as ξ , it is natural to postulate that the symmetry (20) extends from (II) to (II7). Spelled out, this means that (II7) implies

$$(\partial_2 - \partial_1^2)\tilde{u} + h(\tilde{u}) + h'(\tilde{u})\partial_1\tilde{u} = a(\tilde{u})\partial_2\tilde{u} + \tilde{\xi}.$$

Evaluating both identities at y = x, and taking the difference, we get for any solution of (17) that $h'(u(x))\partial_1 u(x) = h'(u(x))(-\partial_1 u(x))$, and thus $h'(u(x))\partial_1 u(x) = 0$, as desired.

COVARIANCE UNDER *u*-SHIFT. We now come to our most crucial postulate, which restricts how the nonlinearity *h* depends on the nonlinearity / constitutive law *a*. Hence we no longer think of a single nonlinearity *a*, but consider all non-linearities at once, in the spiritance of rough paths. This point of view reveals another invariance of (II), namely for any shift $v \in \mathbb{R}$

ao32 (21)
$$(u, a)$$
 satisfies $(\stackrel{ao22}{I}) \implies (u - v, a(\cdot + v))$ satisfies $(\stackrel{ao22}{I})$.

A priori, h is a function of the *u*-variable that has a functional dependence on a, as denoted by h = h[a](u). We postulate that the

6

symmetry $(21)^{ao32}$ extends from $(1)^{ao22}$ $(19)^{ao27}$. This is the case under the following shift-covariance property

ao04 (22)
$$h[a](u+v) = h[a(\cdot+v)](u)$$
 for all $u \in \mathbb{R}$.

This property can also be paraphrased as: Whatever algorithm one uses to construct h from a, it should not depend on the choice of origin in what is just an affine space $\mathbb{R} \ni u$. Property (22) implies that the counter term is determined by a functional c = c[a] on the space of nonlinearities a:

ao09 (23)
$$h[a](v) = c[a(\cdot + v)].$$

ss:3.1

Renormalization now amounts to choosing c such that the solution manifold stays under control as the UV regularization of ξ tends to zero.

4. Algebrizing the counter term

In this section, we algebrize the relationship between a and the counter term h given by a functional c as in (23). To this purpose, we introduce the following coordinates on the space of analytic functions a of the variable u:

ao11 (24)
$$\mathbf{z}_k[a] := \frac{1}{k!} \frac{d^k a}{du^k}(0) \quad \text{for } k \ge 0.$$

These are made such that by Taylor's

ao02 (25)
$$a(u) = \sum_{k \ge 0} u^k \mathbf{z}_k[a] \quad \text{for } a \in \mathbb{R}[u],$$

where $\mathbb{R}[u]$ denotes the algebra of polynomials in the single variable u with coefficients in \mathbb{R} .

We momentarily specify to functionals c on the space of analytic a's that can be represented as polynomials in the (infinitely many) variables z_k . This leads us to consider the algebra $\mathbb{R}[z_k]$ of polynomials in the variables z_k with coefficients in \mathbb{R} . The monomials

ao14 (26)
$$\mathbf{z}^{\beta} := \prod_{k \ge 0} \mathbf{z}_{k}^{\beta(k)}$$

form a basis of this (infinite dimensional) linear space, where β runs over all multi-indices⁴. Hence as a linear space, $\mathbb{R}[\mathbf{z}_k]$ can be seen as the direct sum over the index set given by all multi-indices β , and we think of c as being of the form

ao16 (27)
$$c[a] = \sum_{\beta} c_{\beta} \mathbf{z}^{\beta}[a] \text{ for } c \in \mathbb{R}[\mathbf{z}_k].$$

⁴which means they associate a frequency $\beta(k) \in \mathbb{N}_0$ to every $k \ge 0$ such that all but finitely many $\beta(k)$'s vanish

INFINITESIMAL *u*-SHIFT. Given a shift $v \in \mathbb{R}$, we start from $\mathbb{R} \ni u \mapsto u + v \in \mathbb{R}$, which by pull back leads to $a \mapsto a(\cdot + v)$; this provides an action/representation of the group \mathbb{R} on $\mathbb{R}[u]$. Note that for $c \in \mathbb{R}[\mathsf{z}_k]$ and $a \in \mathbb{R}[u]$, the function $\mathbb{R} \ni v \mapsto c[a(\cdot + v)] = \sum_{\beta} c_{\beta} \prod_{k \geq 0} (\frac{1}{k!} \frac{d^k a}{du}(v))^{\beta(k)}$ is polynomial. Thus

ao06 (28)
$$(D^{(0)}c)[a] = \frac{d}{dv} {}_{|v=0}c[a(\cdot+v)]$$

is well-defined, linear in c and even a derivation in c, meaning that Leibniz's rule holds

ao15 (29)
$$(D^{(0)}cc') = (D^{(0)}c)c' + c(D^{(0)}c').$$

The latter implies that $D^{(0)}$ is determined by its value on the coordinates \mathbf{z}_k , which by definitions (24) and (28) is given by $D^{(0)}\mathbf{z}_k = (k+1)\mathbf{z}_{k+1}$. Hence $D^{(0)}$ has to agree with the derivation on the algebra $\mathbb{R}[\mathbf{z}_k]$

ao13 (30)
$$D^{(0)} = \sum_{k \ge 0} (k+1) \mathbf{z}_{k+1} \partial_{\mathbf{z}_k},$$

which is well defined since the sum is effectively finite when applied to a monomial.

REPRESENTATION OF COUNTER TERM. Iterating $(28)^{ao06}$ we obtain by induction in $l \ge 0$ for $c \in \mathbb{R}[\mathbf{z}_k]$ and $a \in \mathbb{R}[u]$

$$\frac{d^{i}}{lv^{l}|v=0}c[a(\cdot+v)] = ((D^{(0)})^{l}c)[a]$$

and thus by Taylor's (recall that $v \mapsto c[a(\cdot + v)]$ is polynomial)

a007 (31)
$$c[a(\cdot + v)] = \left(\sum_{l \ge 0} \frac{1}{l!} v^l (D^{(0)})^l c\right) [a].$$

We combine $(31)^{a007}$ with $(23)^{a009}$ to

cw11 (32)
$$h[a](v) = \left(\sum_{l \ge 0} \frac{1}{l!} v^l (D^{(0)})^l c\right) [a]$$

Hence our goal is to determine the coefficients c_{β} , which typically will blow up as $\tau \downarrow 0$.

ss:3.2

5. The centered model

The purpose of this section is to motivate the notion of a centered model; the motivation will be in parts formal.

PARAMETERIZATION OF THE SOLUTION MANIFOLD. If $a \equiv 0$ it follows from (22) that h is a (deterministic) constant. We learned from the discussion after Lemma 1 that – given a base point x – there is a distinguished solution v (with v(x) = 0). Hence we may *canonically* parameterize a general solution u of $(\boxed{19}^{ao27}$ via u = v + p, by spacetime functions p with $(\partial_2 - \partial_1^2)p = 0$. Such p are necessarily analytic. Having realized this, it is convenient⁵ to free oneself from the constraint $(\partial_2 - \partial_1^2)p = 0$, which can be done at the expense of relaxing $(\boxed{19}^{ao27})$ to

(33) $(\partial_2 - \partial_1^2)v = \xi + q$ for some analytic space-time function q.

Since we think of ξ as being rough while q is infinitely smooth, this relaxation is still constraining v.

The implicit function theorem suggests that this parameterization (locally) persists in the presence of a sufficiently small analytic nonlinearity a: The nonlinear manifold of all space-time functions u that satisfy

$$(\partial_2 - \partial_1^2)u + h(u) = a(u)\partial_1^2 u + \xi + q$$

ao43

for some analytic space-time function q

is parameterized by space-time analytic functions p. We now return to the point of view of Section 3 of considering all nonlinearities a at once, meaning that we consider the (still nonlinear) space of all space-time functions that satisfy (34) for *some* analytic nonlinearity a. We want to capitalize on the symmetry (21), which extends from (1) to (19) and to (34). We do so by considering the above space of u's *modulo constants*, which we implement by focusing on increments u - u(x). Summing up, it is reasonable to expect that the space of all space-time functions u, modulo space-time constants, that satisfy (34) for some analytic nonlinearity a and space-time function q (but at fixed ξ), is parameterized by pairs (a, p) with p(x) = 0.

FORMAL SERIES REPRESENTATION. In line with the term-by-term approach from physics, we write u(y) - u(x) as a (typically divergent) power series

$$u(y) - u(x)$$

$$\boxed{\textbf{ao83}} \quad (35) \qquad = \sum_{\beta} \Pi_{x\beta}(y) \prod_{k \ge 0} \left(\frac{1}{k!} \frac{d^k a}{du^k}(u(x))\right)^{\beta(k)} \prod_{\mathbf{n} \neq \mathbf{0}} \left(\frac{1}{\mathbf{n}!} \partial^{\mathbf{n}} p(x)\right)^{\beta(\mathbf{n})},$$

where β runs over all multi-indices in $k \ge 0$ and $\mathbf{n} \ne \mathbf{0}$, and where $\mathbf{n}!$:= $(n_1!)(n_2!)$. Introducing coordinates on the space of analytic spacetime functions p with p(0) = 0 via

ao48 (36)
$$\mathbf{z}_{\mathbf{n}}[p] = \frac{1}{\mathbf{n}!} \partial^{\mathbf{n}} p(0) \text{ for } \mathbf{n} \neq \mathbf{0},$$

 $(\overline{35})$ can be more compactly written as

ao01 (37)
$$u(y) = u(x) + \sum_{\beta} \prod_{x\beta} (y) \mathsf{z}^{\beta} [a(\cdot + u(x)), p(\cdot + x) - p(x)].$$

 $\overline{_{5}}$ otherwise, the coordinates $z_{(2,0)}$ and $z_{(0,1)}$ defined in $(\overline{36})$ would be redundant on *p*-space

This is reminiscent of Butcher series in the analysis of ODE discretizations.

Recall from above that for $a \equiv 0$ we have the explicit parameterization

with the distinguished solution v of the linear equation. Hence from setting $a \equiv 0$ and $p \equiv 0$ in (35), we learn that $\Pi_{x0} = v$. From keeping $a \equiv 0$ but letting p vary we then deduce that for all multi-indices $\beta \neq 0$ which satisfy $\beta(k) = 0$ for all $k \ge 0$ we must have⁶

ao59 (39)
$$\Pi_{x\beta}(y) = \left\{ \begin{array}{cc} (y-x)^{\mathbf{n}} & \text{provided } \beta = e_{\mathbf{n}} \\ 0 & \text{else} \end{array} \right\}.$$

HIERARCHY OF LINEAR EQUATIONS. The collection of coefficients ${\Pi_{x\beta}(y)}_{\beta}$ from $(\overset{aoul}{37})_{is}$ an element of the direct *product* with the same index set as the direct sum $\mathbb{R}[\mathbf{z}_k, \mathbf{z}_n]$. Hence the direct product inherits the multiplication of the polynomial algebra

[ao52] (40)
$$(\pi\pi')_{\bar{\beta}} = \sum_{\beta+\beta'=\bar{\beta}} \pi_{\beta}\pi'_{\beta'},$$

and is denoted as the (well-defined) algebra $\mathbb{R}[[\mathbf{z}_k, \mathbf{z_n}]]$ of formal power series; we denote by 1 its unit element. We claim that in terms of (37), $(\overline{34})$ assumes the form of

cw09 (41)
$$(\partial_2 - \partial_1^2)\Pi_x = \Pi_x^-$$
 up to space-time analytic functions where

ao49 (42)
$$\Pi_x^- := \sum_{k \ge 0} \mathsf{z}_k \Pi_x^k \partial_1^2 \Pi_x - \sum_{l \ge 0} \frac{1}{l!} \Pi_x^l (D^{(0)})^l c + \xi_\tau \mathbf{1},$$

as an identity in formal power series in z_k, z_n with coefficients that a 249 are continuous space-time functions. We shall argue below that $(\overline{42})$ is effectively, i. e. componentwise, well-defined despite the two infinite sums, and despite extending from $c \in \mathbb{R}[\mathbf{z}_k]$ to $c \in \mathbb{R}[[\mathbf{z}_k]]$.

Here comes the formal argument that relates $\{\partial_2, \partial_1^2\}u$, a(u), and h(u), to $\{\partial_2, \partial_1^2\}\Pi_x[\tilde{a}, \tilde{p}], \sum_{k\geq 0} \mathsf{z}_k\Pi_x^k[\tilde{a}, \tilde{p}], \text{ and } \sum_{l\geq 0} \frac{1}{l!}\Pi_x^l(D^{(0)})^l c[\tilde{a}, \tilde{p}],$ respectively. Here we have set for abbreviation $\tilde{a} = a(\cdot + u(x))$ and \tilde{p} $p = p(\cdot + x) - p(x)$. It is based on $(\overline{37})$, which can be compactly written as $u(y) = u(x) + \prod_x [\tilde{a}, \tilde{p}](y)$. Hence the statement on $\{\partial_2, \partial_1^2\} u$ follows immediately. Together with $a(u(y)) = \tilde{a}(u(y) - u(x))$, this also implies by (25) the desired

$$a(u(y)) = \big(\sum_{k\geq 0} \mathsf{z}_k \Pi_x^k(y)\big)[\tilde{a}, \tilde{p}].$$

10

⁶where $\beta = e_{\mathbf{n}}$ denotes the multi-index with $\beta(\mathbf{m}) = \delta_{\mathbf{m}}^{\mathbf{n}}$ next to $\beta(k) = 0$

Likewise by $(\stackrel{ao04}{22})$, we have $h[a](u(y)) = h[\tilde{a}](u(y) - u(x))]$, so that by (32), we obtain the desired

$$h[a](u(y)) = \left(\sum_{l \ge 0} \frac{1}{l!} \Pi_x^l(y) (D^{(0)})^l c\right) [\tilde{a}, \tilde{p}].$$

FINITENESS PROPERTIES. The next lemma collects crucial algebraic properties.

Lemma 2. The derivation $D^{(0)}$ extends from $\mathbb{R}[\mathsf{z}_k]$ to $\mathbb{R}[[\mathsf{z}_k]]$. lem:alg Moreover, for $\pi, \pi' \in \mathbb{R}[[z_k, z_n]], c \in \mathbb{R}[[z_k]], and \xi \in \mathbb{R}$,

[w07] (43)
$$\pi^{-} := \sum_{k \ge 0} \mathsf{z}_{k} \pi^{k} \pi' - \sum_{l \ge 0} \frac{1}{l!} \pi^{l} (D^{(0)})^{l} c + \xi \mathbf{1} \in \mathbb{R}[[\mathsf{z}_{k}, \mathsf{z}_{n}]]$$

are well-defined, in the sense that the sums are componentwise finite. Finally, for

[w15] (44)
$$[\beta] := \sum_{k \ge 0} k\beta(k) - \sum_{\mathbf{n} \neq \mathbf{0}} \beta(\mathbf{n})$$

we have the implication

$$\pi_{\beta} = \pi'_{\beta} = 0 \quad unless \quad [\beta] \ge 0 \text{ or } \beta = e_{\mathbf{n}} \text{ for some } \mathbf{n} \neq \mathbf{0}$$
$$\implies$$

$$\begin{bmatrix} \mathbf{cw08} \end{bmatrix} (45) \quad \pi_{\beta}^{-} = 0 \quad unless \quad \left\{ \begin{array}{l} [\beta] \geq 0 \text{ or} \\ \beta = e_{k} + e_{\mathbf{n}_{1}} + \dots + e_{\mathbf{n}_{k}} \\ for \text{ some } k \geq 1 \text{ and } \mathbf{n}_{1}, \dots, \mathbf{n}_{k} \neq \mathbf{0}. \end{array} \right\}.$$

We note that for β_{ab5} as in the second alternative on the r. h. s. of $(\frac{cw08}{45})$, it follows from (39) that $\Pi_{x\beta}^-$ is a polynomial. Hence in view of the modulo in (41), we learn from (45) that we may assume

[cw03] (46)
$$\Pi_{x\beta} \equiv 0$$
 unless $[\beta] \ge 0$ or $\beta = e_{\mathbf{n}}$ for some $\mathbf{n} \neq \mathbf{0}$.

PROOF OF LEMMA 2. We first address the extension of $D^{(0)}$ and note that from (30) we may read off the matrix representation of $D^{(0)} \in \operatorname{End}(\mathbb{R}[\mathsf{z}_k])$ w. r. t. (26) given by lao13

$$(D^{(0)})_{\beta}^{\gamma} = (D^{(0)} \mathbf{z}^{\gamma})_{\beta} \stackrel{|\underline{\mathbf{a013}}}{=} \sum_{k \ge 0}^{k} (k+1) (\mathbf{z}_{k+1} \partial_{\mathbf{z}_{k}} \mathbf{z}^{\gamma})_{\beta}$$

$$\boxed{\mathbf{a020}} \quad (47) \qquad \stackrel{|\underline{\mathbf{a014}}}{=} \sum_{k \ge 0}^{k} (k+1)\gamma(k) \left\{ \begin{array}{c} 1 \quad \text{provided } \gamma + e_{k+1} = \beta + e_{k} \\ 0 \quad \text{otherwise} \end{array} \right\}$$

From this we read off that $\{\gamma | (D^{(0)})_{\beta}^{\gamma} \neq 0\}$ is finite for every β , which implies that $D^{(0)}$ extends from $\mathbb{R}[\mathbf{z}_k]$ to $\mathbb{R}[[\mathbf{z}_k]]$. With help of $(\overset{ao52}{40})$ the derivation property (29) can be expressed coordinate-wise, and thus extends to $\mathbb{R}[\mathbf{z}_k]$.

We now turn to $(\frac{|cw07|}{|43|})$, which component-wise reads

$$\pi_{\beta}^{-} = \sum_{k \ge 0} \sum_{e_{k}+\beta_{1}+\dots+\beta_{k+1}=\beta} \pi_{\beta_{1}} \cdots \pi_{\beta_{k}} \pi_{\beta_{k+1}}'$$

$$\boxed{ao51} \quad (48) \qquad -\sum_{l \ge 0} \frac{1}{l!} \sum_{\beta_{1}+\dots+\beta_{k+1}=\beta} \pi_{\beta_{1}} \cdots \pi_{\beta_{k}} ((D^{(0)})^{l} c)_{\beta_{k+1}} + \xi \delta_{\beta}^{0},$$

and claim that the two sums are effectively finite. For the first r. h. s. this is obvious since thanks to the presence of e_k in $e_k + \beta_1 + \cdots + \beta_{k+1} = \beta$, for fixed β there are only finitely many $k \ge 0$ for which this relation can be satisfied.

In preparation for the second r. h. s. term of $\begin{pmatrix} ao51\\ 48 \end{pmatrix}$ we now establish that

[a019] (49)
$$((D^{(0)})_{\beta}^{\gamma} = 0 \text{ unless } [\beta]_{0} = [\gamma]_{0} + l,$$

where we (momentarily) introduced the scaled length $[\gamma]_0 := \sum_{k\geq 0} k\gamma(k) \in \mathbb{N}_0$. The argument for (49) proceeds by induction in $l \geq 0$. It is tautological for the base case l = 0. In order to pass from l to l + 1 we write $((D^{(0)})^{l+1})^{\gamma}_{\beta} = \sum_{\beta'} ((D^{(0)})^l)^{\beta'}_{\beta} (D^{(0)})^{\gamma}_{\beta'}$; by induction hypothesis, the first factor vanishes unless $[\beta]_0 = [\beta']_0 + l$. We read off (47) that the second factor vanishes unless $[\beta']_0 = [\gamma]_0 + 1$, so that the product vanishes unless $[\beta]_0 = [\gamma]_0 + (l+1)$, as desired.

Equipped with $(\stackrel{|a019}{49})$ we now turn to the second r. h. s. term of $(\stackrel{|a051}{48})$ and note that $((D^{(0)})^l c)_{\beta_{k+1}}$ vanishes unless $l \leq [\beta_{k+1}]_0 \leq [\beta]_0$, which shows that also here, only finitely many $l \geq 0$ contribute for fixed β .

HOMOGENEITY. The homogeneity $|\beta|$ of a multi-index β is motivated by a scaling invariance in law of the manifold of solutions to (22): We start with a parabolic rescaling of space and time according to $x_1 = \lambda \hat{x}_1$ and $x_2 = \lambda^2 \hat{x}_2$. Our assumption on the noise ensemble is consistent with⁸ $\xi =_{\text{law}} \lambda^{\alpha-2} \hat{\lambda}$. This translates into the desired $u =_{\text{law}} \lambda^{\alpha} \hat{u}$, provided we transform the nonlinearities according to $a(u) = \hat{a}(\lambda^{-\alpha}u)$ and $h(u) = \lambda^{\alpha-2}\hat{h}(\lambda^{-\alpha}u)$. On the level of the coordinates (25) the former translates into $\mathbf{z}_k = \lambda^{-\alpha k} \hat{\mathbf{z}}_k$. When it comes to the parameter p it is consistent with (B8) that it scales like u, i. e. $p = \lambda^{\alpha} \hat{p}$, so that the coordinates (B6) transform according to $\mathbf{z}_n = \lambda^{\alpha-|\mathbf{n}|} \hat{\mathbf{z}}_n$. Hence we read off (B7) that $\Pi_{x\beta} =_{\text{law}} \lambda^{|\beta|} \hat{\Pi}_{\hat{x}\beta}$, where

$$|\beta| := \alpha(1 + [\beta]) + |\beta|_p,$$

recalling the definitions $(\begin{array}{c} | cw14 \\ 16 \end{array})$ and $(\begin{array}{c} | cw15 \\ 44 \end{array})$.

12

 $^{^{7}\}gamma = e_{k}$ denotes the multi-index with $\gamma(l) = \delta_{l}^{k}$ next to $\gamma(\mathbf{n}) = 0$

⁸which for $\alpha = \frac{1}{2}$ turns into the well-known invariance of white noise

6. The main result

Theorem 1. Suppose the law of ξ is invariant under translation and spatial reflection; suppose that it satisfies a spectral gap inequality with exponent $\alpha \in (1 - \frac{D}{4}, 1)$ with $\alpha \notin \mathbb{Q}$.

Then given $\tau > 0$, there exists a deterministic $c \in \mathbb{R}[[\mathbf{z}_k]]$, and for every $x \in \mathbb{R}^2$, a random $\prod_{\mathbf{z} \in \mathbf{z}} C^2[[\mathbf{z}_k, \mathbf{z}_n]]$, and a random $\Pi_x^- \in C^0[[\mathbf{z}_k, \mathbf{z}_n]]$ that are related by (42) and

[cw04] (50) $(\partial_2 - \partial_1^2) \prod_{x\beta} = \prod_{x\beta}^- + polynomial of degree \leq |\beta| - 2,$ and that satisfy (39), the population condition (46) and

$$\lfloor cw10 \rfloor$$
 (51) c_{β} unless $|\beta| \ge 2$

Moreover, we have the estimates

cw01 (52)
$$\mathbb{E}^{\frac{1}{p}} |\Pi_{x\beta}(y)|^p \lesssim_{\beta,p} |y-x|^{|\beta|}$$

[cw02] (53)
$$\mathbb{E}^{\frac{1}{p}} |\Pi_{x\beta t}^{-}(y)|^{p} \lesssim_{\beta, p} (\sqrt[4]{t})^{\alpha - 2} (\sqrt[4]{t} + |y - x|)^{|\beta| - \alpha}.$$

As we aimed for, estimate (52) establishes control of the solution manifold, at least in the term-by-term fashion via (35), that is uniform in the UV cut-off $\tau \downarrow 0$.

We remark that we may pass from $(\begin{array}{c} cw02\\ b3 \end{array})$ to $(\begin{array}{c} cw01\\ b2 \end{array})$ by Lemma $\begin{array}{c} lem:int\\ I. Indeed,\\ because of (46) we may restrict to <math>\beta$ with $[\beta] \geq 0$. In this case, by $\alpha \notin \mathbb{Q}, |\beta| = \alpha(1 + [\beta]) + |\beta|_p \notin \mathbb{Z}, \text{ next to } |\beta| \geq \alpha.$ Hence we may indeed apply Lemma $\begin{array}{c} \lim_{t \to \infty} \inf_{\beta \neq 0} \\ \lim_{t \to \infty} \lim_{t$

We further remark that the counter term c is implicitly determined.

7. The spectral gap (SG) condition

⁹by this we mean a formal power series in z_k, z_n with values in the twice continuously differentiable space-time functions