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Evolving Notes by Felix Otto for ISTA summer school,
version July 28th 2022

These are evolving notes; they present selected aspects of the work
arXiv:2112.10739 (with P. Linares, M. Tempelmayr, and P. Tsatsoulis)
with additional motivation. For a simpler setting, we also recommend
to have a look at arXiv:2207.10627 (with P. Linares). The algebraic as-
pects are worked out in arXiv:2103.04187 (with P. Linares and M. Tem-
pelmayr). Thanks to Markus Tempelmayr and Kihoon Seong for proof-
reading.

1. A singular quasi-linear SPDE

We are interested in nonlinear elliptic or parabolic equations with a
random and thus typically rough right hand side ξ. Our goal is to
move beyond the well-studied semi-linear case. We consider a mildly
quasi-linear case where the coefficients of the leading-order derivatives
depend on the solution u itself. To fix ideas, we focus on the parabolic
case in a single space dimension; since we treat the parabolic equation
in the whole space-time like an anisotropic elliptic equation, we denote
by x1 the space-like and by x2 the time-like variable. Hence we propose
to consider

(∂2 − ∂2
1)u = a(u)∂2

1u+ ξ,ao22ao22 (1)

where we think of the values a0 of a(u) to be so small such that ∂2−a0∂
2
1

is parabolic. We are interested in laws / ensembles of ξ where the
solutions v to the linear equation

(∂2 − ∂2
1)v = ξao25ao25 (2)

are (almost surely) Hölder continuous with exponent α ∈ (0, 1). In
view of the parabolic nature, Hölder continuity is measured w. r. t. the
Carnot-Carathéodory distance

“|y − x|′′ := |y1 − x1|+
√
|y2 − x2|.ao79ao79 (3)

By Schauder theory for ∂2−∂2
1 , which we shall expand on below, this is

the case when ξ is in the (negative) Hölder space Cα−2. We note that

this range includes white noise ξ, since the latter is in C−
D
2
−, where D

is the effective (space-time) dimension, which in our parabolic case is
D = 1 + 2 = 3, see Subsection

sec:Schauder
2 for more details.

In the range of α ∈ (0, 1), the SPDE (
ao22
1) is what is “singular”: We

cannot expect the product a(u)∂2
1u to be canonically defined. Indeed,

at least for smooth a, we may hope for a(u) ∈ Cα, but we cannot hope
for more than ∂2

1u ∈ Cα−2. Hence for α < 1, the function a(u) is less
regular then the distribution ∂2

1u is irregular.

The same feature occurs for the (semi-linear) multiplicative heat equa-
tion (∂2 − ∂2

1)u = a(u)ξ; in fact, our approach also applies to this
1
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semi-linear case, which already has been treated by (standard) regu-
larity structures in Hairer-Pardoux ’15. A singular product is already
present in the case when the x1-dependence is suppressed, so that the
above semi-linear equation turns into the SDE du

dx2
= a(u)ξ with white

noise ξ in the time-like variable x2. In this case, the analogue of v from
(
ao25
2) is Brownian motion, which is known to be Hölder continuous with

exponent 1
2
− in x2, which in view of (

ao79
3) corresponds to the border-line

setting α = 1−. Ito’s integral and, more recently, rough paths (Lyons)
and controlled rough path (Gubinelli) have been devised to tackle the
issue in this setting.

2. Annealed Schauder theory
sec:Schauder

This section provides the main (linear) PDE ingredient for our result.
At the same time, it will allow us to discuss (

ao79
3).

In view of (
ao79
3), we are interested in the fundamental solution of the dif-

ferential operator A := ∂2−∂2
1 . It turns out to be convenient to use the

more symmetric1 fundamental solution of A∗A = (−∂2 − ∂2
1)(∂2 − ∂2

1)
= ∂4

1 − ∂2
2 . Moreover, it will be more transparent to “disintegrate” the

latter fundamental solution, by which we mean writing it as
´∞

0
dtψt(z),

where {ψt}t>0 are the kernels of the semi-group exp(−tA∗A) gener-
ated by the non-negative operator A∗A. Clearly, the Fourier transform
Fψt(q) is given by = exp(−t(q4

1 + q2
2)); in particular, ψt is a Schwartz

function. For a Schwartz distribution f like realizations of white noise,
we thus define ft(y) as the pairing of f with ψt(y − ·); ft is a smooth
function. On the level of these kernels, the semi-group property trans-
lates into

ψs ∗ ψt = ψs+t and

ˆ
ψt = 1.ao36ao36 (4)

By scale invariance under x1 = λx̂1, x2 = λ2x̂2, and t = λ4t̂, we have

ψt(x1, x2) =
1

( 4
√
t)D=3

ψ1(
x1

4
√
t
,
x2

( 4
√
t)2

).ao37ao37 (5)

By construction, ψ satisfies the PDE

∂tψt + (∂4
1 − ∂2

2)ψt = 0.ao80ao80 (6)

lem:int Lemma 1. Let 0 < α ≤ η < ∞ with η 6∈ Z, p < ∞, and x ∈ R2 be
given. For a random Schwartz distribution f with

E
1
p |ft(y)|p ≤ (

4
√
t)α−2(

4
√
t+ |y − x|)η−α for all t > 0, y ∈ R2,ao76ao76 (7)

there exists a unique random function u of the class

sup
y∈R2

1

|y − x|η
E

1
p |u(y)|p <∞ao55ao55 (8)

1it is symmetric under reflection space and time
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satisfying (distributionally in R2)

(∂2 − ∂2
1)u = f + polynomial of degree ≤ η − 2.ao56ao56 (9)

It actually satisfies (
ao56
9) without the polynomial. Moreover, the l. h. s. of

(
ao55
8) is bounded by a constant only depending on α and η.

Now white noise ξ is an example of such a random Schwartz distri-

bution: Since ξt(y) is a centered Gaussian, we have E
1
p |ξt(y)|p .p

E 1
2 (ξt(y))2. By the characterizing property of white noise, we have

E 1
2 (ξt(y))2 =

( ´
ψ2
t (y − ·)

) 1
2 , which by scaling (

ao37
5) is equal to( 1

4
√
t

)D
2
( ˆ

ψ2
1

) 1
2 ∼

( 1
4
√
t

) 3
2 ,

which can be interpreted as stating that in an annealed sense, ξ is in

the Hölder class C−
D
2 . Hence the assumptions of Lemma

lem:int
1 are satisfied

with α = η = 1
2
.

Fixing a “base-point” x, Lemma
lem:int
1 thus constructs the solution of (

ao25
2)

distinguished by v(x) = 0. Note that the output (
ao55
8) takes the form

of E
1
p |v(y)− v(x)|p .p |y − x|

1
2 , which amounts to a Hölder continuity

condition, centered in x, and in an annealed sense. Hence Lemma
lem:int
1 provides an annealed version of a Schauder estimate, alongside a
Liouville-type uniqueness result.

Proof of Lemma
lem:int
1 By construction,

´∞
0
dt(−∂2 − ∂2

1)ψt is the fun-
damental solution of ∂2−∂2

1 , so that we take the convolution of it with
f . However, in order to obtain a convergent expression for t ↑ ∞, we
need to pass to a Taylor remainder:

u =

ˆ ∞
0

dt(id− Tη
x)(−∂2 − ∂2

1)ft,ao74ao74 (10)

where Tη
x the operation of taking the Taylor polynomial of order ≤ η;

as we shall argue the additional Taylor polynomial does not affect the
PDE. We claim that (

ao74
10) is well-defined and estimated as

E
1
p |u(y)|p . |y − x|η.

To this purpose, we first note that

E
1
p |∂nft(y)|p . (

4
√
t)α−2−|n|(

4
√
t+ |y − x|)η−α,ao77ao77 (11)

where

∂nu := ∂n1
1 ∂n2

2 u and |n| = n1 + 2n2.ao26ao26 (12)

Indeed, by the semi-group property (
ao36
4) we may write ∂nft(y) =

´
dz

∂nψ t
2
(y−z) f t

2
(z), so that E

1
p |∂nft(y)|p ≤

´
dz|∂nψ t

2
(y−z)|E

1
p |f t

2
(z)|p.

Hence by (
ao76
7), (

ao77
11) follows from the kernel bound

´
dz |∂nψ t

2
(y − z)|
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( 4
√
t + |y − x|)η−α . ( 4

√
t)−|n|( 4

√
t + |y − x|)η−α, which itself is a conse-

quence of the scaling (
ao37
5) and the fact that ψ 1

2
is a Schwartz function.

Equipped with (
ao77
11), we now derive two estimates for the integrand

of (
ao74
10), namely for 4

√
t ≥ |y − x| (“far field”) and for 4

√
t ≤ |y − x|

(“near field”). We write the Taylor remainder (id− Tη
x)(∂2 + ∂2

1)ft(y)
as a linear combination of2 (y − x)n∂n(∂2 + ∂2

1)ft(z) with |n| > η and
at some point z intermediate to y and x. By (

ao77
11) such a term is

estimated by |y − x||n|( 4
√
t)α−4−|n|( 4

√
t + |y − x|)η−α, which in the far

field is ∼ |y − x||n|( 4
√
t)η−4−|n|. Since the exponent on t is < −1, we

obtain as desired

E
1
p |
ˆ ∞
|y−x|4

dt(id− Tη
x)(∂2 + ∂2

1)ft(y)|p . |y − x|η.

For the near-field term, i. e. for 4
√
t ≤ |y − x|, we proceed as

E
1
p |(id− Tη

x)(∂2 + ∂2
1)ft(y)|p

≤ E
1
p |(∂2 + ∂2

1)ft(y)|p +
∑
|n|≤η

|y − x||n|E
1
p |∂n(∂2 + ∂2

1)ft(x)|p

(
ao77
11)

. (
4
√
t)α−4|y − x|η−α +

∑
|n|≤η

|y − x||n|( 4
√
t)η−4−|n|.

Since η is not an integer, the sum restricts to |n| < η, so that all
exponents on t are > −1. Hence we obtain as desired

E
1
p |
ˆ |y−x|4

0

dt(id− Tη
x)(∂2 + ∂2

1)ft(y)|p . |y − x|η.

We return to the discussion of the singular product, in its simplest form
of

v∂2
1v = ∂2

1

1

2
v2 − (∂1v)2.

While in view of Lemma
lem:int
1 the first r. h. s. term is well-defined as a

Schwartz distribution, we now argue that the second term diverges.
Since it has a sign, it diverges as a distribution iff it diverges as a
function; hence it is enough to argue that its pointwise expectation
diverges. Indeed, applying ∂1 to the representation formula (

ao74
10), so

that the constant Taylor term drops out, we have

∂1v =

ˆ ∞
0

dt∂1(−∂2 − ∂2
1)ξt.ao30ao30 (13)

2where xn := xn1
1 xn2

2
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We note that for the integrand

E
1
2 (∂1(−∂2 − ∂2

1)ξt(y))2

=
( ˆ

(∂1(−∂2 − ∂2
1)ψt)

2
) 1

2

= (
4
√
t)−3−D

2

( ˆ
(∂1(−∂2 − ∂2

1)ψ1)2
) 1

2 ∼ t−
9
8 .ao81ao81 (14)

Hence (
ao30
13), evaluated in a point y, diverges w. r. t. E 1

2 | · |2 – while it
converges as a Schwartz distribution.

In this sense we have E(∂1v(y))2 = +∞; in view of (
ao81
14), this divergence

arises from t ↓ 0, that is, from small space/time scales, and thus is
called an ultra-violet (UV) divergence. A quick fix is to introduce an
UV cut-off, which for instance can be implemented by mollifying ξ.
Using the semi-group convolution ξτ specifies the UV cut-off scale to
be of the order of 4

√
τ . It is easy to check that in this case

E(∂1v(y))2 ∼ ( 4
√
τ)−

1
2 .

The goal is to modify the equation (
ao22
1) by “counter terms” such that

• the solution manifold stays under control as the ultra-violet
cut-off τ ↓ 0.
• invariances of the solution manifold are preserved

In view of the above discussion, we expect the coefficients of the counter
terms to diverge as the cut-off tends to zero.

3. Postulates on the form of the counter terms
sec:post

In view of α ∈ (0, 1), u is a function while we think of all derivatives
∂nu as being only Schwartz distributions. Hence it is natural to start
from the very general Ansatz that the counter term is a polynomial in
{∂nu}n6=0 with coefficients that are general (local) functions in u:

(∂2 − ∂2
1)u+

∑
β

hβ(u)
∏
n6=0

(∂nu)β(n) = a(u)∂2
1u+ ξ,ao23ao23 (15)

where β runs over all multi-indices3 in n 6= 0.

Only counter terms that have an order strictly below the order of the
leading ∂2 − ∂2

1 are desirable, so that one postulates that the sum in
(
ao23
15) restricts to those multi-indices for which

|β|p :=
∑
n6=0

|n|β(n) < 2.cw14cw14 (16)

3which associate to every index n a β(n) ∈ N0 such that β(n) vanishes for all
but finitely many n’s



D
RA

FT

6

This leaves only β = 0 and β = e(1,0), where the latter means β(n) =

δ
(1,0)
n , so that (

ao23
15) collapses to

(∂2 − ∂2
1)u+ h(u) + h′(u)∂1u = a(u)∂2

1u+ ξ.ao24ao24 (17)

One also postulates that h and h′ depend on the noise ξ only through
its law / distribution / ensemble, hence are deterministic. Since we
assume that the law is invariant under space-time translation, i. e. is
stationary, it was natural to postulate that h and h′ do not explicitly
depend on x, hence are homogeneous.

Reflection symmetry. Let us now assume that

the law of ξ is invariant under space-time translation y 7→ y + x

and space reflection y 7→ (−y1, y2).ao30bisao30bis (18)

We now argue that under this assumption, it is natural to postulate
that the term h′(u)∂1u in (

ao24
17) is not present, so that we are left with

(∂2 − ∂2
1)u+ h(u) = a(u)∂2

1u+ ξ.ao27ao27 (19)

To this purpose, let x ∈ R2 be arbitrary yet fixed, and consider the
reflection at the line {y1 = x1} given by Ry = (2x1 − y1, y2), which
by pull back acts on functions as ũ(y) = u(Ry). Since (

ao22
1) features no

explicit y-dependence, and only involves even powers of ∂1, which like
∂2 commute with R, we have

(u, ξ) satisfies (
ao22
1) =⇒ (ũ, ξ̃) satisfies (

ao22
1).ao29ao29 (20)

Since we postulated that h and h′ depend on ξ only via its law, and
since in view of the assumption (

ao30bis
18), ξ̃ has the same law as ξ, it is

natural to postulate that the symmetry (
ao29
20) extends from (

ao22
1) to (

ao24
17).

Spelled out, this means that (
ao24
17) implies

(∂2 − ∂2
1)ũ+ h(ũ) + h′(ũ)∂1ũ = a(ũ)∂2ũ+ ξ̃.

Evaluating both identities at y = x, and taking the difference, we get
for any solution of (

ao24
17) that h′(u(x))∂1u(x) = h′(u(x))(−∂1u(x)), and

thus h′(u(x))∂1u(x) = 0, as desired.

Covariance under u-shift. We now come to our most crucial pos-
tulate, which restricts how the nonlinearity h depends on the non-
linearity / constitutive law a. Hence we no longer think of a single
nonlinearity a, but consider all non-linearities at once, in the spirit
of rough paths. This point of view reveals another invariance of (

ao22
1),

namely for any shift v ∈ R

(u, a) satisfies (
ao22
1) =⇒ (u− v, a(·+ v)) satisfies (

ao22
1).ao32ao32 (21)

A priori, h is a function of the u-variable that has a functional de-
pendence on a, as denoted by h = h[a](u). We postulate that the
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symmetry (
ao32
21) extends from (

ao22
1) to (

ao27
19). This is the case under the

following shift-covariance property

h[a](u+ v) = h[a(·+ v)](u) for all u ∈ R.ao04ao04 (22)

This property can also be paraphrased as: Whatever algorithm one
uses to construct h from a, it should not depend on the choice of origin
in what is just an affine space R 3 u. Property (

ao04
22) implies that the

counter term is determined by a functional c = c[a] on the space of
nonlinearities a:

h[a](v) = c[a(·+ v)].ao09ao09 (23)

Renormalization now amounts to choosing c such that the solution
manifold stays under control as the UV regularization of ξ tends to
zero.

4. Algebrizing the counter term
ss:3.1

In this section, we algebrize the relationship between a and the counter
term h given by a functional c as in (

ao09
23). To this purpose, we introduce

the following coordinates on the space of analytic functions a of the
variable u:

zk[a] :=
1

k!

dka

duk
(0) for k ≥ 0.ao11ao11 (24)

These are made such that by Taylor’s

a(u) =
∑
k≥0

ukzk[a] for a ∈ R[u],ao02ao02 (25)

where R[u] denotes the algebra of polynomials in the single variable u
with coefficients in R.

We momentarily specify to functionals c on the space of analytic a’s
that can be represented as polynomials in the (infinitely many) vari-
ables zk. This leads us to consider the algebra R[zk] of polynomials in
the variables zk with coefficients in R. The monomials

zβ :=
∏
k≥0

z
β(k)
kao14ao14 (26)

form a basis of this (infinite dimensional) linear space, where β runs
over all multi-indices4. Hence as a linear space, R[zk] can be seen as
the direct sum over the index set given by all multi-indices β, and we
think of c as being of the form

c[a] =
∑
β

cβz
β[a] for c ∈ R[zk].ao16ao16 (27)

4which means they associate a frequency β(k) ∈ N0 to every k ≥ 0 such that all
but finitely many β(k)’s vanish
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Infinitesimal u-shift. Given a shift v ∈ R, we start from R 3
u 7→ u + v ∈ R, which by pull back leads to a 7→ a(· + v); this
provides an action/representation of the group R on R[u]. Note that
for c ∈ R[zk] and a ∈ R[u], the function R 3 v 7→ c[a(· + v)] =∑

β cβ
∏

k≥0( 1
k!
dka
du

(v))β(k) is polynomial. Thus

(D(0)c)[a] =
d

dv |v=0
c[a(·+ v)]ao06ao06 (28)

is well-defined, linear in c and even a derivation in c, meaning that
Leibniz’s rule holds

(D(0)cc′) = (D(0)c)c′ + c(D(0)c′).ao15ao15 (29)

The latter implies that D(0) is determined by its value on the coor-
dinates zk, which by definitions (

ao11
24) and (

ao06
28) is given by D(0)zk =

(k+1)zk+1. Hence D(0) has to agree with the derivation on the algebra
R[zk]

D(0) =
∑
k≥0

(k + 1)zk+1∂zk ,ao13ao13 (30)

which is well defined since the sum is effectively finite when applied to
a monomial.

Representation of counter term. Iterating (
ao06
28) we obtain by

induction in l ≥ 0 for c ∈ R[zk] and a ∈ R[u]

dl

dvl |v=0
c[a(·+ v)] = ((D(0))lc)[a]

and thus by Taylor’s (recall that v 7→ c[a(·+ v)] is polynomial)

c[a(·+ v)] =
(∑
l≥0

1

l!
vl(D(0))lc

)
[a].ao07ao07 (31)

We combine (
ao07
31) with (

ao09
23) to

h[a](v) =
(∑
l≥0

1

l!
vl(D(0))lc

)
[a].cw11cw11 (32)

Hence our goal is to determine the coefficients cβ, which typically will
blow up as τ ↓ 0.

5. The centered model
ss:3.2

The purpose of this section is to motivate the notion of a centered
model; the motivation will be in parts formal.

Parameterization of the solution manifold. If a ≡ 0 it follows
from (

ao04
22) that h is a (deterministic) constant. We learned from the

discussion after Lemma
lem:int
1 that – given a base point x – there is a

distinguished solution v (with v(x) = 0). Hence we may canonically
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parameterize a general solution u of (
ao27
19) via u = v + p, by space-

time functions p with (∂2 − ∂2
1)p = 0. Such p are necessarily analytic.

Having realized this, it is convenient5 to free oneself from the constraint
(∂2 − ∂2

1)p = 0, which can be done at the expense of relaxing (
ao27
19) to

(∂2 − ∂2
1)v = ξ + q for some analytic space-time function q.ao43ao43 (33)

Since we think of ξ as being rough while q is infinitely smooth, this
relaxation is still constraining v.

The implicit function theorem suggests that this parameterization (lo-
cally) persists in the presence of a sufficiently small analytic nonlin-
earity a: The nonlinear manifold of all space-time functions u that
satisfy

(∂2 − ∂2
1)u+ h(u) = a(u)∂2

1u+ ξ + q

for some analytic space-time function qao45ao45 (34)

is parameterized by space-time analytic functions p. We now return to
the point of view of Section

sec:post
3 of considering all nonlinearities a at once,

meaning that we consider the (still nonlinear) space of all space-time
functions that satisfy (

ao45
34) for some analytic nonlinearity a. We want

to capitalize on the symmetry (
ao32
21), which extends from (

ao22
1) to (

ao27
19)

and to (
ao45
34). We do so by considering the above space of u’s modulo

constants, which we implement by focusing on increments u − u(x).
Summing up, it is reasonable to expect that the space of all space-time
functions u, modulo space-time constants, that satisfy (

ao45
34) for some

analytic nonlinearity a and space-time function q (but at fixed ξ), is
parameterized by pairs (a, p) with p(x) = 0.

Formal series representation. In line with the term-by-term
approach from physics, we write u(y)− u(x) as a (typically divergent)
power series

u(y)− u(x)

=
∑
β

Πxβ(y)
∏
k≥0

( 1

k!

dka

duk
(u(x))

)β(k)
∏
n6=0

( 1

n!
∂np(x)

)β(n)
,ao83ao83 (35)

where β runs over all multi-indices in k ≥ 0 and n 6= 0, and where n!
:= (n1!)(n2!). Introducing coordinates on the space of analytic space-
time functions p with p(0) = 0 via

zn[p] =
1

n!
∂np(0) for n 6= 0,ao48ao48 (36)

(
ao83
35) can be more compactly written as

u(y) = u(x) +
∑
β

Πxβ(y)zβ[a(·+ u(x)), p(·+ x)− p(x)].ao01ao01 (37)

5otherwise, the coordinates z(2,0) and z(0,1) defined in (
ao48
36) would be redundant

on p-space
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This is reminiscent of Butcher series in the analysis of ODE discretiza-
tions.

Recall from above that for a ≡ 0 we have the explicit parameterization

u− u(x) = v + pcw13cw13 (38)

with the distinguished solution v of the linear equation. Hence from
setting a ≡ 0 and p ≡ 0 in (

ao83
35), we learn that Πx0 = v. From keeping

a ≡ 0 but letting p vary we then deduce that for all multi-indices β 6= 0
which satisfy β(k) = 0 for all k ≥ 0 we must have6

Πxβ(y) =

{
(y − x)n provided β = en

0 else

}
.ao59ao59 (39)

Hierarchy of linear equations. The collection of coefficients
{Πxβ(y)}β from (

ao01
37) is an element of the direct product with the same

index set as the direct sum R[zk, zn]. Hence the direct product inherits
the multiplication of the polynomial algebra

(ππ′)β̄ =
∑

β+β′=β̄

πβπ
′
β′ ,ao52ao52 (40)

and is denoted as the (well-defined) algebra R[[zk, zn]] of formal power
series; we denote by 1 its unit element. We claim that in terms of (

ao01
37),

(
ao45
34) assumes the form of

(∂2 − ∂2
1)Πx = Π−x up to space-time analytic functionscw09cw09 (41)

where

Π−x :=
∑
k≥0

zkΠ
k
x∂

2
1Πx −

∑
l≥0

1

l!
Πl
x(D

(0))lc+ ξτ1,ao49ao49 (42)

as an identity in formal power series in zk, zn with coefficients that
are continuous space-time functions. We shall argue below that (

ao49
42)

is effectively, i. e. componentwise, well-defined despite the two infinite
sums, and despite extending from c ∈ R[zk] to c ∈ R[[zk]].

Here comes the formal argument that relates {∂2, ∂
2
1}u, a(u), and

h(u), to {∂2, ∂
2
1}Πx[ã, p̃],

∑
k≥0 zkΠ

k
x[ã, p̃], and

∑
l≥0

1
l!
Πl
x(D

(0))lc[ã, p̃],
respectively. Here we have set for abbreviation ã = a(· + u(x)) and p̃
= p(·+ x)− p(x). It is based on (

ao01
37), which can be compactly written

as u(y) = u(x) + Πx[ã, p̃](y). Hence the statement on {∂2, ∂
2
1}u follows

immediately. Together with a(u(y)) = ã(u(y)−u(x)), this also implies
by (

ao02
25) the desired

a(u(y)) =
(∑
k≥0

zkΠ
k
x(y)

)
[ã, p̃].

6where β = en denotes the multi-index with β(m) = δnm next to β(k) = 0
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Likewise by (
ao04
22), we have h[a](u(y)) = h[ã](u(y) − u(x))], so that by

(
cw11
32), we obtain the desired

h[a](u(y)) =
(∑
l≥0

1

l!
Πl
x(y)(D(0))lc

)
[ã, p̃].

Finiteness properties. The next lemma collects crucial algebraic
properties.

lem:alg Lemma 2. The derivation D(0) extends from R[zk] to R[[zk]].

Moreover, for π, π′ ∈ R[[zk, zn]], c ∈ R[[zk]], and ξ ∈ R,

π− :=
∑
k≥0

zkπ
kπ′ −

∑
l≥0

1

l!
πl(D(0))lc+ ξ1 ∈ R[[zk, zn]]cw07cw07 (43)

are well-defined, in the sense that the sums are componentwise finite.

Finally, for

[β] :=
∑
k≥0

kβ(k)−
∑
n6=0

β(n)cw15cw15 (44)

we have the implication

πβ = π′β = 0 unless [β] ≥ 0 or β = en for some n 6= 0

=⇒

π−β = 0 unless

 [β] ≥ 0 or
β = ek + en1 + · · ·+ enk

for some k ≥ 1 and n1, · · · ,nk 6= 0.

 .cw08cw08 (45)

We note that for β as in the second alternative on the r. h. s. of (
cw08
45),

it follows from (
ao59
39) that Π−xβ is a polynomial. Hence in view of the

modulo in (
cw09
41), we learn from (

cw08
45) that we may assume

Πxβ ≡ 0 unless [β] ≥ 0 or β = en for some n 6= 0.cw03cw03 (46)

Proof of Lemma
lem:alg
2. We first address the extension of D(0) and

note that from (
ao13
30) we may read off the matrix representation of D(0)

∈ End(R[zk]) w. r. t. (
ao14
26) given by

(D(0))γβ = (D(0)zγ)β
(
ao13
30)
=
∑
k≥0

(k + 1)
(
zk+1∂zkz

γ
)
β

(
ao14
26)
=
∑
k≥0

(k + 1)γ(k)

{
1 provided γ + ek+1 = β + ek
0 otherwise

}
.ao20ao20 (47)

From this we read off that {γ|(D(0))γβ 6= 0} is finite for every β, which

implies that D(0) extends from R[zk] to R[[zk]]. With help of (
ao52
40) the

derivation property (
ao15
29) can be expressed coordinate-wise, and thus

extends to R[zk].
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We now turn to (
cw07
43), which component-wise reads

π−β =
∑
k≥0

∑
ek+β1+···+βk+1=β

πβ1 · · · πβkπ′βk+1

−
∑
l≥0

1

l!

∑
β1+···+βk+1=β

πβ1 · · · πβk((D(0))lc)βk+1
+ ξδ0

β,ao51ao51 (48)

and claim that the two sums are effectively finite. For the first r. h. s. this
is obvious since thanks to the presence of7 ek in ek+β1 + · · ·+βk+1 = β,
for fixed β there are only finitely many k ≥ 0 for which this relation
can be satisfied.

In preparation for the second r. h. s. term of (
ao51
48) we now establish that

((D(0))l)γβ = 0 unless [β]0 = [γ]0 + l,ao19ao19 (49)

where we (momentarily) introduced the scaled length [γ]0 :=
∑

k≥0 kγ(k) ∈
N0. The argument for (

ao19
49) proceeds by induction in l ≥ 0. It is tau-

tological for the base case l = 0. In order to pass from l to l + 1 we

write ((D(0))l+1)γβ =
∑

β′((D(0))l)β
′

β (D(0))γβ′ ; by induction hypothesis,

the first factor vanishes unless [β]0 = [β′]0 + l. We read off (
ao20
47) that

the second factor vanishes unless [β′]0 = [γ]0 + 1, so that the product
vanishes unless [β]0 = [γ]0 + (l + 1), as desired.

Equipped with (
ao19
49) we now turn to the second r. h. s. term of (

ao51
48) and

note that ((D(0))lc)βk+1
vanishes unless l ≤ [βk+1]0 ≤ [β]0, which shows

that also here, only finitely many l ≥ 0 contribute for fixed β.

Homogeneity. The homogeneity |β| of a multi-index β is motivated
by a scaling invariance in law of the manifold of solutions to (

ao04
22):

We start with a parabolic rescaling of space and time according to
x1 = λx̂1 and x2 = λ2x̂2. Our assumption on the noise ensemble is
consistent with8 ξ =law λα−2λ̂. This translates into the desired u =law

λαû, provided we transform the nonlinearities according to a(u) =

â(λ−αu) and h(u) = λα−2ĥ(λ−αu). On the level of the coordinates (
ao02
25)

the former translates into zk = λ−αkẑk. When it comes to the parameter
p it is consistent with (

cw13
38) that it scales like u, i. e. p = λαp̂, so that

the coordinates (
ao48
36) transform according to zn = λα−|n|ẑn. Hence we

read off (
ao01
37) that Πxβ =law λ

|β|Π̂x̂β, where

|β| := α(1 + [β]) + |β|p,

recalling the definitions (
cw14
16) and (

cw15
44).

7γ = ek denotes the multi-index with γ(l) = δkl next to γ(n) = 0
8which for α = 1

2 turns into the well-known invariance of white noise
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6. The main result

Theorem 1. Suppose the law of ξ is invariant under translation and
spatial reflection; suppose that it satisfies a spectral gap inequality with
exponent α ∈ (1− D

4
, 1) with α 6∈ Q.

Then given τ > 0, there exists a deterministic c ∈ R[[zk]], and for every
x ∈ R2, a random9 Πx ∈ C2[[zk, zn]], and a random Π−x ∈ C0[[zk, zn]]
that are related by (

ao49
42) and

(∂2 − ∂2
1)Πxβ = Π−xβ + polynomial of degree ≤ |β| − 2,cw04cw04 (50)

and that satisfy (
ao59
39), the population condition (

cw03
46) and

cβ unless |β| ≥ 2.cw10cw10 (51)

Moreover, we have the estimates

E
1
p |Πxβ(y)|p .β,p |y − x||β|,cw01cw01 (52)

E
1
p |Π−xβt(y)|p .β,p (

4
√
t)α−2(

4
√
t+ |y − x|)|β|−α.cw02cw02 (53)

As we aimed for, estimate (
cw01
52) establishes control of the solution man-

ifold, at least in the term-by-term fashion via (
ao83
35), that is uniform in

the UV cut-off τ ↓ 0.

We remark that we may pass from (
cw02
53) to (

cw01
52) by Lemma

lem:int
1. Indeed,

because of (
cw03
46) we may restrict to β with [β] ≥ 0. In this case, by

α 6∈ Q, |β| = α(1 + [β]) + |β|p 6∈ Z, next to |β| ≥ α. Hence we may
indeed apply Lemma

lem:int
1 with η = |β| and (

cw02
53) as input. The output

yields a (unique) Πxβ satisfying (
cw04
50) and (

cw01
52).

We further remark that the counter term c is implicitly determined.

7. The spectral gap (SG) condition

9by this we mean a formal power series in zk, zn with values in the twice contin-
uously differentiable space-time functions


