Evolving Notes by Felix Otto for ISTA summer school,
version July 28th 2022

These are evolving notes; they present selected aspects of the work
arXiv:2112.10739 (with P. Linares, M. Tempelmayr, and P. Tsatsoulis)
with additional motivation. For a simpler setting, we also recommend
to have a look at arXiv:2207.10627 (with P. Linares). The algebraic as-
pects are worked out in arXiv:2103.04187 (with P. Linares and M. Tem-
pelmayr). Thanks to Markus Tempelmayr and Kihoon Seong for proof-
reading.

1. A SINGULAR QUASI-LINEAR SPDE

We are interested in nonlinear elliptic or parabolic equations with a
random and thus typically rough right hand side £&. Our goal is to
move beyond the well-studied semi-linear case. We consider a mildly
quasi-linear case where the coefficients of the leading-order derivatives
depend on the solution u itself. To fix ideas, we focus on the parabolic
case in a single space dimension; since we treat the parabolic equation
in the whole space-time like an anisotropic elliptic equation, we denote
by x; the space-like and by x5 the time-like variable. Hence we propose
to consider

(1) (02 — 0Y)u = a(u)dfu+ &,

where we think of the values ag of a(u) to be so small such that 9y —ag0?
is parabolic. We are interested in laws / ensembles of £ where the
solutions v to the linear equation

(2) (@ = 0f)v=¢

are (almost surely) Holder continuous with exponent o € (0,1). In
view of the parabolic nature, Hélder continuity is measured w. r. t. the
Carnot-Carathéodory distance

(3) “ly —x|" = |y — 21| + VY2 — 22l

By Schauder theory for 9, —9?, which we shall expand on below, this is
the case when ¢ is in the (negative) Holder space C*2. We note that

this range includes white noise &, since the latter is in C”%’, where D

is the effective (space-time) digen&b'oi[ll which in our parabolic case is
g sec:ochduder .
D =1+ 2 = 3, see Subsection 2 for more details.
2022 . .

In the range of a € (0,1), the SPDE (I) 1s what is “singular”: We
cannot expect the product a(u)d?u to be canonically defined. Indeed,
at least for smooth a, we may hope for a(u) € C*, but we cannot hope
for more than 0?u € C*~2. Hence for o < 1, the function a(u) is less
regular then the distribution 9% is irregular.

The same feature occurs for the (semi-linear) multiplicative heat equa-
tion (0y — 03)u = a(u); in fact, our approach also applies to this
1



sec:Schauder‘

ao36

ao37

2080

lem:int

ao76

aob5b

2

semi-linear case, which already has been treated by (standard) regu-
larity structures in Hairer-Pardoux ’15. A singular product is already
present in the case when the x;-dependence is suppressed, so that the
above semi-linear equation turns into the SDE ddT“Z = a(u)¢ with white

oige € in the time-like variable z. In this case, the analogue of v from
](TZWS Brownian motion, which is known o be Hélder continuous with
exponent %— in x9, which in view of (bﬁorresponds to the border-line
setting @ = 1—. Ito’s integral and, more recently, rough paths (Lyons)
and controlled rough path (Gubinelli) have been devised to tackle the
issue in this setting.

2. ANNEALED SCHAUDER THEORY
At the same time, it will allow us to discuss 3
2079

In view of (b’)ﬁzve are interested in the fundamental solution of the dif-
ferential operator A := 0y — 7. It turns out to be convenient to use the
more symmetric' fundamental solution of A*A = (=0, — 9%)(0y — 9?)
= 0} — 3. Moreover, it will be more transparent to “disintegrate” the
latter fundamental solution, by which we mean writing it as fooo dty(2),
where {1;};~o are the kernels of the semi-group exp(—tA*A) gener-
ated by the non-negative operator A*A. Clearly, the Fourier transform
Fibi(q) is given by = exp(—t(qf + ¢3)); in particular, v is a Schwartz
function. For a Schwartz distribution f like realizations of white noise,
we thus define f;(y) as the pairing of f with ¢;(y — -); f; is a smooth
function. On the level of these kernels, the semi-group property trans-
lates into

(4) 1/15 * wt = wert and /wt =1.

By scale invariance under z; = A&y, 22 = \2@9, and t = \*¢, we have
1 T i)

) T1,Ty) = ———— U1 (—=, .

(5) Yi(z1, 22) (%)D:3¢1(% (\%)2)

By construction, ¢ satisfies the PDE
(6) Oy + (0] — 93y = 0

This section provides the main (linear) PDE ineredient for our result.
(E).

Lemma 1. Let 0 < a <1 < oo withn € Z, p < oo, and v € R? be
gwen. For a random Schwartz distribution f with

(1) Bl i)l < (VO 2(Ve+ |y — )™ forallt >0,y € R?,
there exists a unique random function u of the class

1 1
8 sup ——Er|u(y)|? < oo
0 sup B u(y)|

Lit is symmetric under reflection space and time



satisfying (distributionally in R?)
(9) (0y — 0%)u = f + polynomial of degree < n — 2.

56
It gctually satisfies (a95 without the polynomaial. Moreover, the l. h. s. of
(85 15 bounded by a constant only depending on o and 7.

Now white noise ¢ is an example of such a random Schwartz distri-
1

bution: Since &(y) is a centered Gaussian, we have E?|§(y)[P <,

E%(&( ))2 By the characterizing property of white noise, we have

Ez(&(y = ([ iy ) which by scahng (%33‘178 equal to

2 1
——)° / wl 2 4 7

which can be mterpreted as stating that in an annealed pense, ¢ isin
the Holder class C—%. Hence the assumptions of Lemma [T are satisfied

with a =n = 5

1 t 25
Fixing a “base-point” x, Lemma Iefmﬁlllg constructs the solution of (boi
distinguished by v(z) = 0. Note that the output (8) takes the form

of Ev|v(y) — v(z)|P <, |y — x|2, which amounts to a Holder continuity

onth jon, centered 1n x, and in an annealed sense. Hence Lemma
hWideS an annealed version of a Schauder estimate, alongside a
Liouville-type uniqueness result.

PROOF OF LEMMA %ﬁrﬁ.;ingonstruction, [T dt(—=0, — 97)¢y is the fun-
damental solution of Jy — 87, so that we take the convolution of it with
f. However, in order to obtain a convergent expression for ¢ 1 co, we
need to pass to a Taylor remainder:

(10) u = / dt(id — T7)(~0, — 3P .

where T7 the operation of taking the Taylor polynomial of order < n;
as we shall argue the addjtional Taylor polynomial does not affect the
PDE. We claim that (10 is well-defined and estimated as

1
Erju(y)l” < ly — .
To this purpose, we first note that

(11) E#[0" fuly)l S (VB> (Ve 4 Jy — ),

where
(12) O = 01"03*u and |n| = ny + 2ns.
. 2036
Indeed by the semi-group property (hi we may write 9" f;(y) = [dz

2) f1(2). so that E» |0" fi(y)lP < de\(’?“%(y—Z)|EP\f%( )P
Hence by h_l']g’follows from the kernel bound [ dz |01 (y — 2)
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(Vt+ |y —z|)7 < (%}&'“(\% + |y — x|)"*, which itself is a conse-
quence of the scaling (5) and the fact that w% is a Schwartz function.
ao(7

Eq ip fd with (hﬁf we now derive two estimates for the integrand
of (0}, namely for v/t > |y — z| (“far field”) and for vt < |y — z|
(“near field”). We write the Taylor remainder (id — T7)(dy + 0?) f:(y)
as a linear combination of® (y — 2)"0™(dy + 97) fi(z) with |n| > n and
at some point z intermediate to y and z. By (ﬁ_l'g}such a term is
estimated by |y — z|Pl(v/#)*=1=I(V/t + |y — 2])"~, which in the far
field is ~ |y — z|™(v/#)7~4~Il. Since the exponent on t is < —1, we
obtain as desired

E7| dt(id — T1)(0y + ) fi(y) P < |y — .

ly—x|*

For the near-field term, i. e. for v/t < |y — 2|, we proceed as
B |(id — T2)(3 + 02) fuly) "
<E (@ + X))+ Y ly — oME[0" (9 + ) fula)

0077 [n|<n

(1)

S (VO y =+ Yy —al M,
In|<n

Since 7 is not an integer, the sum restricts to |n| < 7, so that all
exponents on t are > —1. Hence we obtain as desired

L [ly=el?
ol / dt(id = T8, + ) ()P < ly — "
0

We return to the discussion of the singular product, in its simplest form

of
2 2l o 2
v0jv = 0] SV (01v)".

While in view of Lemma %ﬁ%}%ﬁrst r. h. s. term is well-defined as a
Schwartz distribution, we now argue that the second term diverges.
Since it has a sign, it diverges as a distribution iff it diverges as a
function; hence it is enough to argue that its pointwise expegtation
diverges. Indeed, applying 0; to the representation formula (E'D%T SO
that the constant Taylor term drops out, we have

(13) v — / At (— 0 — O2)e.
0

2where g™ := z7 z]?



We note that for the integrand
E: (0 (—0 — 01)&(y))’
— ([ @2~ Bw?)
T SR (CTC Y

2030 . . . 1 2 . .
Hence (I3§, evaluated in a point y, diverges w. r. t. Ez| - |* — while it
converges as a Schwartz distribution.

D=

NI

_9
~ 1 8.

2081
In this sense we have E(91v(y))? = +o00; in view of (hﬂ%this divergence
arises from ¢ | 0, that is, from small space/time scales, and thus is
called an ultra-violet (UV) divergence. A quick fix is to introduce an
UV cut-off, which for instance can be implemented by mollifying &.
Using the semi-group convolution &, specifies the UV cut-off scale to
be of the order of /7. It is easy to check that in this case

E(0yw(y))? ~ (V7) 2.

. . X 2022
The goal is to modify the equation (1] by “counter terms” such that

e the solution manifold stays under control as the ultra-violet
cut-off 7 | 0.
e invariances of the solution manifold are preserved

In view of the above discussion, we expect the coefficients of the counter
terms to diverge as the cut-off tends to zero.

3. POSTULATES ON THE FORM OF THE COUNTER TERMS

In view of @ € (0,1), w is a function while we think of all derivatives
0"u as being only Schwartz distributions. Hence it is natural to start
from the very general Ansatz that the counter term is a polynomial in
{0™u}nro with coefficients that are general (local) functions in wu:

(1) (&= Du+ ) hs(w) [[(0"0)™ = a(w)dtu+¢,
B n#0
where 3 runs over all multi-indices® in n # 0.

Only counter terms that have an order strictly below the order of the
la% ng Oy — 0? are desirable, so that one postulates that the sum in
(IT5) restricts to those multi-indices for which

(16) Bl, == n|B(n) <2.

n#0

3which associate to every index n a f(n) € Ny such that S(n) vanishes for all
but finitely many n’s
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This leaves onl = 0 and 3 = e(1,p), where the latter means S(n) =
539 so that (

(17) (03 — 0*)u + h(u) + I (u)0yu = a(u)diu + £.

One also postulates that h and h' depend on the noise £ only through
its law / distribution / ensemble, hence are deterministic. Since we
assume that the law is invariant under space-time translation, i. e. is
stationary, it was natural to postulate that h and A’ do not explicitly
depend on x, hence are homogeneous.

023
collapses to

REFLECTION SYMMETRY. Let us now assume that

the law of £ is invariant under space-time translation y — y + x

(18) and space reflection y — (—y1,y2).

We now argue that under this assumption, it is natural to postulate
that the term A'(u)0jw in (II7)is not present, so that we are left with

(19) (03 — 0% u + h(u) = a(u)du + £.

To this purpose, let x € R? be arbitrary yet fixed, and consider the
reflection at the line {y; = 1} given by Ry = (227 — which
by pull back acts on functions as @(y) = u(Ry). Since h’)_féatures 1no
explicit y-dependence, and only involves even powers of 0y, which like
Jo commute with R, we have

(20) (u, &) satisfies (ﬁ'c% — (@, €) satisfies (%))2

Since we postulated that h and h’ (H)end on ¢ only via its law, and
since in view of the assumption ( , & h the same law a4, it
natural to postulate that the symmetry (bll; extends from (II) to (1 7%
Spelled out, this means that (T7) implies

(8y — 0%)ti + h(@) + B (0)0y0t = a(@)Daii + €.

Evaluating both identifjes at y = x, and taking the difference, we get
for any solution of (l 7% that A'(u(x))0yu(x) = b (u(x))(—0u(x)), and
thus A/(u(x))01u(z) = 0, as desired.

COVARIANCE UNDER u-SHIFT. We now come to our most crucial pos-
tulate, which restricts how the nonlinearity h depends on the non-
linearity / constitutive law a. Hence we no longer think of a single
nonlinearity a, but consider all non-linearities at once, in the spirit,,
of rough paths. This point of view reveals another invariance of (
namely for any shift v € R

(21) (u,a) satisfies (ﬁ'c))g = (u—wv,a(- +v)) satisfies (%32

A priori, h is a function of the u-variable that has a functional de-
pendence on a, as denoted by h = hla|(u). We postulate that the
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2032 2022 |ao27
symmetry ("ZI% extends from (I) to (19). This is the case under the
following shift-covariance property

(22) hlal(u 4+ v) = hla(- + v)](u) for allu € R.

This property can also be paraphrased as: Whatever algorithm one
uses to construct h from a, it should not depend o%%t%}f choice of origin
in what is just an affine space R 3 u. Property ( implies that the
counter term is determined by a functional ¢ = c[a] on the space of
nonlinearities a:

(23) hlal(v) = cla(- +v)].

Renormalization now amounts to choosing ¢ such that the solution
manifold stays under control as the UV regularization of ¢ tends to
zZero.

4. ALGEBRIZING THE COUNTER TERM

In this section, we algebrize the relatiopship between a and the counter
term h given by a functional ¢ as in (23). To this purpose, we introduce
the following coordinates on the space of analytic functions a of the
variable u:

1 d*a
These are made such that by Taylor’s
(25) a(u) = Z uFzila) for a € Rlu],

k>0

where R[u] denotes the algebra of polynomials in the single variable u
with coefficients in R.

We momentarily specify to functionals ¢ on the space of analytic a’s
that can be represented as polynomials in the (infinitely many) vari-
ables z;. This leads us to consider the algebra R|z;] of polynomials in
the variables z;, with coefficients in R. The monomials

(26) 7’ = Hzg(k)
k>0

form a basis of this (infinite dimensional) linear space, where  runs
over all multi-indices*. Hence as a linear space, R[zz] can be seen as
the direct sum over the index set given by all multi-indices 5, and we
think of ¢ as being of the form

(27) cla] = Z csz’[a] for ¢ € R[z).
B

4which means they associate a frequency B(k) € Ny to every k > 0 such that all
but finitely many S(k)’s vanish
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INFINITESIMAL u-SHIFT. Given a shift v € R, we start from R >
u — u+ v € R, which by pull back leads to a — a(- + v); this
provides an action/representation of the group R on Rfu|. Note that
for ¢ € R[z] and a € Rlu], the function R 5 v — cla(- + v)] =

k . .
Zﬁ s Hk>0(kl, ‘fiu (v))#*) is polynomial. Thus

d

28 D© — -
(29) (DO0)fa) = 5. clat-+ )

is well-defined, linear in ¢ and even a derivation in ¢, meaning that
Leibniz’s rule holds

(29) (D(O)cc’) = (D9¢)d + (D).

The latter implies that D@ is dete rlmned bé/ fg‘cs value on the coor—
dinates zj, which by deﬁmtlons (ZZI.i and (ES; is given by D
(k+1)z41. Hence D(© has to agree with the derivation on the algebra
Rz

(30) DO = "(k + 1)2541 0y,
k>0

which is well defined since the sum is effectively finite when applied to
a monomial.

2006
REPRESENTATION OF COUNTER TERM. Iterating (bS% we obtain by

induction in [ > 0 for ¢ € R[z;] and a € R|u]
dl

- . - (0))1

Bt psgtlatF o)l = (D) e)lal

and thus by Taylor’s (recall that v — c[a(- + v)] is polynomial)
(31) o+ o) = (3 Z_I!U%D(O))lc) a].
1>0
We combine (Eplgzwith (ao gto
(32 Alal(v) = (3 0! (D)) o]
1>0

Hence our goal is to determine the coefficients cg, which typically will
blow up as 7 | 0.

5. THE CENTERED MODEL

The purpose of this section is to motivate the notion of a centered
model; the motivation will be in parts formal.

PARA [ERIZATION OF THE SOLUTION MANIFOLD. If a = 0 it follows
from IE‘Z%Ethat his a termn%lstlc) constant. We learned from the
discussion after Lemma } that — given a base point x — there is a
distinguished solution v (with v(z) = 0). Hence we may canonically
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2027
parameterize a general solution u of ( via u = v + p, by space-

time functions p with (9 — 97)p = 0. Such p are necessarily analytic.
Having realized this, it is convenient® to free oneself from the co 1straint
(02 — 9%)p = 0, which can be done at the expense of relaxing (T9) to

(33) (0 —03)v = €4 q  for some analytic space-time function q.

Since we think of ¢ as being rough while ¢ is infinitely smooth, this
relaxation is still constraining v.

The implicit function theorem suggests that this parameterization (lo-
cally) persists in the presence of a sufficiently small analytic nonlin-
earity a: The nonlinear manifold of all space-time functions v that
satisfy

(02 = OY)u + h(u) = a(u)dfu + & +4

(34) for some analytic space-time function ¢

is parameterized by space-t grelg:algg%ytic functions p. We now return to
the point of view of Section &3 of considering all nonlinearities a at once,
meaning that we consi a%£5the (still nonlinear) space of all space-time
functions that satisfy (34) for so%%ﬁnalytic nonlinearity a., We wang_
to capitalize on the symmetry (2I), which extends from (h’fﬁo (
and to (B4). We do so by considering the above space of u’s modulo
constants, which we implement by focusing on increments u — u(x).
Summing up, it is reasonable to expect that the space of Ellloﬁgace—time
functions u, modulo space-time constants, that satisfy ?%fofor some
analytic nonlinearity a and space-time function ¢ (but at fixed &), is
parameterized by pairs (a,p) with p(z) = 0.

FORMAL SERIES REPRESENTATION. In line with the term-by-term
approach from physics, we write u(y) — u(x) as a (typically divergent)
power series

35) = i) IT (G aru@)™ T omp() ™,
B ) )

k>0 n#£0
where § runs over all multi-indices in £ > 0 and n # 0, and where n!
:= (n1!)(ng!). Introducing coordinates on the space of analytic space-
time functions p with p(0) = 0 via
(36) 2alp] = —0"p(0) forn £0,
2083 n
(ﬁ%can be more compactly written as

(87 uly) = ul2) + Y Wap(®)2la(- + u(@)), p(- +2) —p(a)].
8

5 . . . |ao48
otherwise, the coordinates z(3 gy and z(g,1) defined in ( would be redundant

on p-space
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This is reminiscent of Butcher series in the analysis of ODE discretiza-
tions.

Recall from above that for a = 0 we have the explicit parameterization
(38) u—u(r)=v+p

with the distinguished solutio U of the linear equation. Hence from
setting a = 0 and p = 0 in (B5), we learn that 11,0 = v. From keeping
a = 0 but letting p vary we then deduce that for all multi-indices g # 0
which satisfy 3(k) = 0 for all k¥ > 0 we must have®

(y —x)™ provided 5 = e,

(39) Iap(y) = { 0 clse } '

HIERARCHY OF LINEAR EQUATIONS. The collection of coefficients
{I1.5(y) }s from (%’7%\%5 an element of the direct product with the same
index set as the direct sum Rz, z,]. Hence the direct product inherits
the multiplication of the polynomial algebra

(40) (mm")5 = Z TR,

B+B'=p

and is denoted as the (well-defined) algebra R[[zy, z,]] of formal power

serigs; we denote by 1 its unit element. We claim that in terms of (87),
a0

(%ZH assumes the form of

(41) (0 — 0D, = I, up to space-time analytic functions

where

p 1
(42) I, =Yz, — ) EH;(D“’))ZC + &1,

k>0 1>0

as an identity in formal power series in zj,z, with coefficients thatg
are continuous space-time functions. We shall argue below that (

is effectively, i. e. componentwise, well-defined despite the two infinite
sums, and despite extending from ¢ € R[zg] to ¢ € R[[zx]].

Here comes the formal argument that relates {0, 9% }u, a(u), and
(), to {00, GTL[A, 7], 3y 2l 5[0, 7], and Sy ATTL (DO efa ),
respectively. Here we have set for abbreviation a = a(- + u(z)) and p
= p(-+x) — p(z). It is based on (37), which can be compactly written
as u(y) = u(z) + [a, p|(y). Hence the statement on {9y, 97 }u follows
immedjately. Together with a(u(y)) = a(u(y) —u(z)), this also implies
by (25) the desired

a(u(y)) = (D zll(y)) (a7

k>0

Swhere 8 = ey, denotes the multi-index with 3(m) = 6% next to S(k) =0
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I%{:)a)vise by (B%% we have hla|(u(y)) = hla](u(y) — u(x))], so that by

, we obtain the desired
1
= (3 3w (D0)e) a5
>0

FINITENESS PROPERTIES. The next lemma collects crucial algebraic
properties.

Lemma 2. The derivation D© extends from R(z;] to R[[z]].
Moreover, for m,7" € R|[zx,z4]], ¢ € R][z¢]], and £ € R,
1

(43) 71 = Z z o — ﬁﬂ'l(D(O))lc +£&1 € R[zk, zn)]

k>0 >0
are well-defined, in the sense that the sums are componentwise finite.
Finally, for
(44) 8] := > _kB(k) =Y _ A(n)

k>0 n£0

we have the implication

mg =1y =0 wunless [3]>0 orB =ey for somen # 0

—
[8] >0 or
(45) Ty =0 unless B =¢€k+en + - +en,
for somek > 1 andny,--- ;n, # 0.
8
We note that for_f.as in the second alternative on the r. h. s. of (CW :

it follows fr &39; that I, sE 3 8polylrlonruf:ﬂ Hence in view of the

modulo in ( We learn from that we may assume
(46) I, =0 wunless [8] >0 or (= e, for somen # 0.
lem:al
PROOF OF LEMN ¢ first address the extension of D(© and

note that from (30] we may read off the matrix representation of DO
€ End(R]zg]) w. 1. t. (Zg; given by

%Z(k + )(zkﬂazkzv)ﬁ

(D@) (D@ﬂ)(

k>0
aol B
6) 1 provided v+ epr1 = B + ex
(47) Zk>0 (k+ 1)y { 0 otherwise '

From this we read off that {~|(D! ) # 0} is finite for every S, nglch

implies that D extends from R[zk] to R[[zx]]. With help of (b’D%’the
derivation property ( can be expressed coordinate-wise, and thus
extends to Rizg].
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cwQ7 . .
We now turn to (hZE ;, which component-wise reads

Ts=D DL T TATh,

k>0 €k+ﬁ1+ +Br+1=8

(48) —Z S ma e ma (D) o)s,,, +E8Y,

>0 " Bi+-+Brr1=8

and claim that the two sums are effectively finite. For the first r. h. s. this
is obvious since thanks to the presence of” e in ey + 81+ - -+ Brs1 = f,
for fixed S there are only finitely many k£ > 0 for which this relation
can be satisfied.

. ao51 .
In preparation for the second r. h. s. term of (&IS%’V% now establish that
(49) (D9)); =0 unless [Blo=[lo+1,

where we (momentarily) in roduced the scaled length Yo =D kv(k) €
Ny. The argument for (h@%’pmceeds by induction in [ > 0. It is tau-
tological for the base case [ = 0. In order to pass from [ to [ + 1 we
write ((D© g = ZB’(( )) (D© )B” by induction hypothesis,
the first factor Vanlshes unless [B]o = [B']o + . We read off (@1‘7%’ that
the second factor vanishes unless [8']o = [y]o + 1, so that the product
vanishes unless [5]o = [y]o + (I + 1), as desired.

9 1
Equipped with (&[aogi we now turn to the second r. h. s. term of (Ea[%%’and
note that ((D'®)'c)s, ., vanishes unless I < [B11]o < [B]o, which shows
that also here, only finitely many [ > 0 contribute for fixed S.

HOMOGENEITY. The homogeneity || of a multi-index 3 is motiv%?%é
by a scaling invariance in law of the manifold of solutions to (22):
We start with a parabolic rescaling of space and time according to
21 = A& and 9 = A?%,. Our assumption on the noise ensemble is
consistent with® & =, A~2)\. This translates into the desired u —aw
A%, provided we transform the nonlinearities according to a(u) =
a(A~u) and h(u) = A*2h(A*u). On the level of the coordinates (B’BS)L
the former translates nto zj = A~%3,. When it comes to the parameter
p it is consistent Wliﬁél that it scales like u, i. e. p = A%p, so that
the coordlnates bGTtransform according to z, = \*~ Iz . Hence we
read off ( that .5 =law )\W'Hw where

18] = a(l+ [5]) + |5l
4 5
recalling the definitions (%’and (%’

7y = e; denotes the multi-index with (1) = 6F next to y(n) = 0

8which for a = % turns into the well-known invariance of white noise
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6. THE MAIN RESULT

Theorem 1. Suppose the law of £ is invariant under translation and
spatial reflection; suppose that it satisfies a spectral gap inequality with
exponent o € (1 — Z,1) with o ¢ Q.

Then given T > 0, there exists a deterministic ¢ € R[[zx]], and for every
x € R?, a random’ 1, € C?([zx, zo]], and a random IT,; € C°[[zy, zn]|
that are related by (Zéj and

(50) (9, — 0PI w5 = 1L + polynomial of degree < 18] — 2,
cw03
and that satisfy W the population condition Wand

(51) cg unless |B| > 2.

Moreover, we have the estimates

(52) Er (Moo (u)|? So ly — 2/,

(53) E» [T, ()P Spp (VO 2(VE+ [y — )1

cw01
As we aimed for, estimate (%2; establishes control of the solution man-
ifold, at least in the term-by-term fashion via (85), that is uniform in
the UV cut-off 7 | 0.

c lem:int
We remark h 1gf we may pass from %3; to %%; by Lemma IT. lﬁaeed,

because of ( we may restrict to 5 with [$] > 0. In this case, by
a g Q,|f =al+] ]Q |p ¢ Z next t | > «. Hence we may
indeed apply Lemma and C(w as input. The output

yields a (unique) II,4 satlsfymg

We further remark that the counter term c is implicitly determined.

7. THE SPECTRAL GAP (SG) CONDITION

9by this we mean a formal power series in zy, z,, with values in the twice contin-
uously differentiable space-time functions



